• 제목/요약/키워드: Detailed Kinetic Mechanism

검색결과 36건 처리시간 0.025초

천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구 (Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames)

  • 이수룡;김홍집;정석호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

Numerical Simulations of the Pyrolysis of 1, 2 Dichloroethane

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.102-108
    • /
    • 2002
  • Numerical simulations of 1, 2 dichloroethane(EDC) pyrolyisis are conducted to understand the process in the production of the vinyl chloride monomer (VCM) and by-products. A chemical kinetic mechanism Is developed, with the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the EDC yield an(1 the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1, 2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through C$_2$H$_4$Cl$_2$+Cl=CH$_2$CICHI+HCI.

가솔린 연료를 위한 대용혼합물의 상세한 화학반응 메카니즘 개발 (Development of a Detailed Chemical Kinetic Reaction Mechanism of Surrogate Mixtures for Gasoline Fuel)

  • 이기용
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.46-52
    • /
    • 2009
  • The oxidation of surrogate mixtures for gasoline fuel was studied numerically in perfectly stirred reactor(PSR) to develope the needed detailed reaction mechanism. The reaction mechanism was assembled with the mechanisms for the oxidation of iso-octane or kerosene. It was shown that the reaction model predicted reasonably well the concentration profiles of fuel and major species reported in the literature. As the addition of kerosene into iso-octane as fuel was increased, the concentrations of $C_2H_2$ and benzene became high. Especially benzene known as a carcinogen appeared at a very high concentration in the flue gases.

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

HCCI 엔진 해석을 위한 Diesel Surrogate 반응 기구에 관한 연구 (A Study on the Detailed Diesel Surrogate Chemical Mechanism for Analysis of HCCI Engine)

  • 이원준;이승로;이창언
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.64-71
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) was the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process was mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, detailed kinetic reaction mechanisms of diesel surrogate was investigated to understand the diesel HCCI engine combustion. It was tested two existing mechanisms and two new mechanisms for the comparison of experimental result. The best mechanism for diesel surrogate was suggested through this comparison.

피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구 (A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss)

  • 한덕주;최재권
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

$CH_4/O_2/N_2$ 예혼합화염에서 산소부화에 따른 화염구조 (The Flame Structure of $CH_4/O_2/N_2$ Premixed Flames on the $O_2$ Enrichment)

  • 이기용;남태형;유현석;최동수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.53-59
    • /
    • 2001
  • Experimental measurements are conducted to investigate the structure of flat $CH_4/O_2/N_2$ premixed flames. The flames are simulated using a detailed chemical kinetic mechanism. Four flames established at equivalence ratio = 0.55 are studied with the different $O_2$ enrichment level, ${\Omega}$ = 0.21, 0.25, 0.30, and 0.35. The measured flame speed and species composition profiles are compared with the calculations. Whereas there is overall good agreement between the measurements and predictions, it appears that as the $O_2$ enrichment level is increased the position of the flame is moved toward the exit of the burner and the rapid temperature rise happens near the exit of the burner, and some areas of further refinement in the kinetic mechanism are identified.

  • PDF

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구 (Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components)

  • 김규진;이상열;민경덕
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

1,2 Dichloroethane의 열분해에 대한 수치해석 (Numerical Simulations of the Pyrolysis of 1,2 Dichloroethane)

  • 이기용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.697-702
    • /
    • 2001
  • Numerical simulations of 1,2 dichloroethane(EDC) pyrolysis are conducted to understand the process on the production of the vinyl chloride monomer(VCM) and by-products. A chemical kinetic mechanism is developed, the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the VCM yield and the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1,2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through $C_{2}H_{4}Cl_{2}+Cl=CH_{2}ClCHCl$.

  • PDF