• 제목/요약/키워드: Detailed Hydrogen reaction Mechanism

검색결과 19건 처리시간 0.03초

Analysis of Oscillation Behaviour in Unsteady Shock-Induced Combustion with Detailed Reaction Mechanisms

  • Kumar, P.Pradeep;Kim, Kui-Soon;Oh, Sejong;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.251-255
    • /
    • 2015
  • Unsteady Shock-Induced Combustion has been studied for the past few decades since it is considered as one of the potential ways to reach supersonic flights. Experimental observations of Unsteady SIC were observed as early as 1960's. But Lehr was the first to report in detail the mechanisms of Shock-Induced Combustion experimentally. Numerical Studies on SIC were helpful in explaining the insight into the oscillatory behaviour in the mid 90's to early 2000's. Detailed reaction mechanisms is required to prediction the SIC flowfield more in detail. However at that time, very few reaction mechanisms on hydrogen-oxidation were reported. In the last decade, various number of hydrogen reaction mechanisms were reported. In this study, an attempt has been made to analyze the effect of various reaction mechanisms in an unsteady mode of Shock-Induced Combustion.

  • PDF

Numerical Simulation of Detonation with Detailed H2/O2 Reaction Mechanisms

  • Kumar, P.Pradeep;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.169-174
    • /
    • 2014
  • Detonation propagation studies is recently getting more attention in these days for its feasibility in aerospace application. Another motivation for this study is the safety concern in industries, since the detonation can cause failure to the mechanical components particularly when the flame accelerates within a pipe or tubes. In this study we numerically simulated a Moderately unstable detonation case with various grid systems and fluid dynamic length scales and have compared in the contents. Moderately Unstable detonation case was selected for this study and detailed Hydrogen-Air Reaction Mechanisms proposed by Jachimowski was used in this study with N2 as inert species.

  • PDF

반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구 (Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas)

  • 박정수
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.41-46
    • /
    • 2018
  • 본 연구에서는 바이오가스 기반 예혼합 압축착화(Homogeneous charged compression ignition, HCCI) 엔진에 수소를 첨가하였을 때, 연소실 내부 압력, 온도 배출가스에 미치는 영향에 대해 살펴보았다. 자세히는 수소 첨가량과 과다공기량(${\lambda}$) 변화에 따른 연소실 압력 온도, 그리고 생성물로서의 NO, $CO_2$ 배출 특성을 화학 반응 해석 프로그램을 사용하여 고찰하였다. 대상의 엔진은 2300cc 바이오가스 엔진 발전기로서 압축비 13:1, 발전량 15kW 급이다. 과급압은 1.2bar 고정 조건이며, rpm은 1800rpm의 정속 조건이다. 엔진 연소 방식은 예혼합 압축 착화를 모사하였다. 본 연구를 진행하기에 앞서 바이오가스의 주요 조성인 메탄의 연소 및 산화 메커니즘에 대한 선행 연구에 대한 고찰을 통하여 연소반응 메커니즘을 규명하기 위한 반응 메커니즘 연구 기술의 경향을 살펴보고, 본 연구에 적용 가능한 반응 메커니즘을 선정하여 해석을 진행하였다. 수소를 첨가할 때 NO는 증가하는 반면, $CO_2$등의 배출량은 감소하였고 실린더 내부 압력이 상승하며, 상승 구간이 진각 됨을 알 수 있었다. 또한, 희박영역에서 수소 첨가가 가연 한계를 증가시켰다.

원자-라디칼 반응 동력학의 교차 빔 연구 (A Crossed Beam Study of Atom-Radical Reaction Dynamics)

  • Ju Seon-Gyu;Gwon Lee-Gyeong;Lee Ho-Jae;Choe Jong-Ho
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.163-164
    • /
    • 2003
  • Reaction dynamics plays an essential role in understanding the microscopic mechanism of elementary chemical processes at the molecular level. Detailed studies of the reactions of atomic species such as hydrogen and second-row atoms with small closed-shell molecules have provided important insights into hydrocarbon synthesis, combustion, interstellar space and atmospheric chemistry. Despite its mechanistic significance, however, the investigations of atom-radical reaction dynamics are quite scarce in comparison to the extensive studies of atom-molecule reactions. (omitted)

  • PDF

대향류 화염에서의 합성가스 내 수소 함량에 따른 연소 특성 변화에 관한 수치해석 연구 (Numerical Study of Combustion Characteristics for Hydrogen Content in Syngas in Opposed-Flow Flame)

  • 김동희;박진제;허강열;이영재
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.467-479
    • /
    • 2020
  • Various researches are being conducted to reduce greenhouse gases generated by the consumption of traditional energy resources. This study was conducted to numerically analyze the combustion characteristics and N-S reaction behavior with respect to the H2 content of syngas composed of CO and H2 in pressurized air combustion. A non-premixed opposed flow flame model was applied a modified detailed mechanism with S-chemistry was developed based on GRI 3.0 to simulate the syngas reaction. As the hydrogen content increased, the flame thickness increased due to the fast reactivity of hydrogen. In the rich region, NO and SO2 were reduced by reaction with H radical and H bonding of NO was suppressed by the formation of HOSO.

HFP가 첨가된 수소/공기 혼합기의 자연점화에서의 화학반응 (Chemical Reaction of $H_2$/Air Mixture Inhibited by Heptafluoropropane(HFP) during Autoignition Process)

  • 이의주;오창보
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.100-103
    • /
    • 2008
  • Autoignition suppression of hydrogen/air premixed mixtures by $CF_3CHFCF_3$(HFP) was investigated computationally. Numerical simulation was performed in isobaric and homogeneous system to evaluate the induction times. The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The results shows the similar concentrations for the major reactants such as hydrogen and oxygen during autoignition while water vapor produced at the ignition temperature was decomposed later, which leaded to the shoulder on the concentration of H, OH and O radical with time. The fluorine included from HFP was converted mainly to stable HF and the carbon was formed to various species, CF2, CF2O, CO etc. More details of chemical effects of HFP addition will be investigate with sensitivity analysis in the near future.

  • PDF

금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발 (Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed)

  • 남진무;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

H2/Air 비예혼합화염의 화염신장율에 따른 NO 생성경로의 상세해석 (Detailed Analysis of NO Formation Routes with Strain Rate in H2/Air Nonpremixed Flames)

  • 김종현;황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.604-611
    • /
    • 2008
  • Detailed analysis of NO formation routes and its contributions with strain rate in hydrogen/air flames were numerically investigated. LiG detailed reaction mechanism has been used for calculation, which is compared with experimental data in literature. It shows good agreement with experiment for both temperature and NO mole fraction. Three routes have been found important for NO formation in hydrogen flames. These are the Thermal route, NNH route and $N_2O$ route. Strain rate were varied to discuss the $EI_{NO}$ reduction trend in hydrogen nonpremixed flames, which are analyzed by each NO formation routes. As a result, as the strain rate increase, $EI_{NO}$ decrease sharply until strain rate $100s^{-1}$ and decrease slowly until strain rate $310s^{-1}$ again, after that $EI_{NO}$ keeps nearly constant. It can be identified that $EI_{NO}$ trend with the strain rate is well explained by a combination of variation of production rate of above Thermal, NNH and $N_2O$ route. Also result of Thermal-Mech. that includes only thermal NO reaction is compared with those of Full-Mech. As a result, It can be identified that there was difference between the two results of calculation. It is attributed to result that Thermal-mech did not consider contributions of NNH and $N_2O$ route. From these result, we can conclude that NOx emission characteristics of hydrogen nonpremixed flames should consider contributions of above three routes simultaneously.

효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법 (Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis)

  • 강기하;문성영;노진현;원수희;최정열
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF

수소/공기/HFP 혼합기의 화학반응 및 점화지연 특성 (Characteristics of Chemical Reaction and Ignition Delay of $H_2$/Air/HFP Mixtures)

  • 이의주;오창보
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.17-21
    • /
    • 2010
  • The chemistry and ignition delay of hydrogen/air/HFP premixed mixtures was investigated numerically with unsteady perfectly stirred reactor(PSR). The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The results shows the temporal concentration variations of major or reactants such as hydrogen and oxygen during autoignition were similar to the spatial distribution of premixed flame while water vapor produced at the ignition temperature was decomposed later, which can be clarified with the relate species production rates that the the re-growth (or shoulder) of OH concentration is a result of F radicals attacking $H_20$ forming OH and HF. For the stoichiometric $H_2$/air mixture inhibited by 20% HFP, HFP thermal decomposition reaction prevails over the radical attack such as H at initial stage. Even though relatively large HFP addition contributes to delay the ignition, chemical effect on the ignition delay is not effective because of late thermal decomposition of HFP. The most small ignition delay was observed at a slightly fuel lean condition ($\phi$ = 0.9), and temperature dependency of ignition delay was clearly shown near 900 K.