• 제목/요약/키워드: Detached eddy simulation

검색결과 55건 처리시간 0.026초

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DES 방법을 이용한 비압축성 열린 공동 유동의 수치적 모사 (DETACHED EDDY SIMULATION OF AN INCOMPRESSIBLE FLOW PAST AN OPEN CAVITY)

  • 장경식;박승오;권오준
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.48-54
    • /
    • 2005
  • Three-dimensional incompressible flow past an open cavity in a channel is investigated using Detached Eddy Simulation(DES). The length to depth ratio of the cavity is 2 and the Reynolds number defined with the cavity depth is 3,360. The DES methods are based on the Menter's SST model. In the present work, two types of inflow conditions are used: one is RANS profile, the other is LES inflow from another Large Eddy Simulation(LES) of fully developed channel flow. The results are compared with experimental data and LES results in terms of the mean statistics, temporal physics and scalar transport phenomenon of the flow.

DES 방법을 이용한 비압축성 열린 공동 유동의 수치적 모사 (Detached Eddy Simulation of an incompressible flow past an open cavity)

  • 장경식;박승오;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.148-152
    • /
    • 2005
  • The three-dimensional incompressible flow past an open cavity in a channel is investigated using Detached Eddy Simulation(DES). The length to depth ratio of the cavity is 2 and the Reynolds number defined with the cavity depth is 3,360. The DES methods are based on the Mentor's SST model. In the present work, two types of inflow conditions are used; one is RANS profile, the other is LES inflow from another Large Eddy Simulation(LES) of fully developed channel flow. The results are compared with experimental data and LES results in terms of the mean statistics and temporal physics of the flow.

  • PDF

초음속 유동에서 기저유동의 Detached Eddy Simulation (Detached Eddy Simulation of Base Flow in Supersonic Mainstream)

  • 신재렬;문성영;원수희;최정열
    • 한국항공우주학회지
    • /
    • 제37권10호
    • /
    • pp.955-966
    • /
    • 2009
  • 초음속 유동장 내의 축대칭 기저유동에 DES 기법을 적용하였다. 이 기법은 RANS 모드에서는 Spalart-Allmaras (S-A) 난류 모델을 사용하고, Large-eddy simulation (LES) 모드에서는 부격자 모델을 기반으로 하고 있다. LES 보다 비교적 적은 비용을 갖는 DES 기법을 사용하여 기저 유동장과 기저 압력을 정교게 예측할 수 있었다. 기저유동의 정확한 예측을 위해 경계층 두께, 운동량 두께, 표면마찰과 같은 기저 가장자리 유동 물성치를 Dutton 등의 실험과 비교하였다. DES는 하류영역에서의 전단층 말림, 큰 에디 운동, 재순환영역 내의 작은 에디 운동 같은 비정상 난류 운동의 물리적 현상을 잘 모사 하였다. 또한, 경험상수 $C_{DES}$ 1.2를 사용한 현재 결과가 일반적인 경험상수 $C_{DES}$ 0.65에 비해 실험과 잘 일치함을 보여준다.

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장 (Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield)

  • 원수희;정인석;최정열
    • 한국항공우주학회지
    • /
    • 제37권9호
    • /
    • pp.863-878
    • /
    • 2009
  • 초음속 주 유동내 연료의 수직분사에 따른 비정상 3차원 유동장을 DES 난류 모델을 이용해 모사하였다. 해석 결과는 시간에 따른 에디 거동 및 생성 빈도에 대해 실험과 비교되었으며, 에디 생성 메커니즘을 이해하기 위해 분사기 주변 와도에 대한 분석을 수행하였다. DES 난류 모델은 에디의 대류 특성을 비교적 정확하게 모사하고 있으나, 에디 생성빈도는 다소 과대 예측하고 있다. 분사기 상류 재순환 영역에서 엇회전하는 와류가 번갈아 떨어져 나가면서 에디 구조가 생성된다.

DES 기법을 이용한 270°곡덕트에서 발달하는 난류 유동의 수치해석 (Detached Eddy Simulation of a Developing Turbulent Flow in a 270° Curved Duct)

  • 서정식;신종근;최영돈;이주철
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.471-478
    • /
    • 2008
  • Detached Eddy Simulation (DES) is performed for developing turbulent flow of the $270^{\circ}$ curved duct at a Reynolds number of 56,690. The curvature ratio on the basis of a centric radius $R_c$ and a duct height H is 3.357. Turbulence models adopted are k-$\omega$ model for Reynolds Average Navier-Stokes (RANS) equation Simulation and Shear Stress Transport (SST) model for DES. DES is used as the hybrid computation technique combined with RANS-SST and Large Eddy Simulation (LES). Predicted results are compared with measured results including the distributions of Reynolds stresses and the flow characteristics on the symmetric plane of curved duct are presented. Judging from the comparison between the predicted and the measured results, the DES approach is applicable to calculate the developing turbulent flow in a $270^{\circ}$ curved duct.

오픈폼을 활용한 자유진동하는 라이저 주위 유동의 LES 해석 (Large Eddy Simulation of Free Motion of Marine Riser using OpenFOAM)

  • 정재환;정광열;길재흥;정동호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.387-393
    • /
    • 2019
  • In this study, the free motion of a riser due to vortex shedding was numerically simulated with Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) turbulence models. A numerical simulation program was developed by applying the Rhie-Chow interpolation method to the pressure correction of the OpenFOAM standard solver pimpleDyMFoam. To verify the developed program, the vortex shedding around the fixed riser at Re = 3900 was calculated, and the results were compared with the existing experimental and numerical data. Moreover, the vortex-induced vibration of a riser supported by a linear spring was numerically simulated while varying the spring constant. The results are compared with published direct numerical simulation (DNS) results. The present calculation results show that the numerical method is appropriate for simulating the vortex-induced motion of a riser, including lock-in phenomena.

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue;Khurram, Rooh A.;Habashi, Wagdi G.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.1-19
    • /
    • 2013
  • A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.