• Title/Summary/Keyword: Destructive test

Search Result 592, Processing Time 0.021 seconds

The Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Test Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정)

  • Kim, Myung-Sik;Jang, Hei-Suk;Beak, Dong-Il;Sin, Nam-Gyun;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.145-148
    • /
    • 2006
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, In this study, a strength test was carried out destructive test by means of core sampling and traditional test. Non-destructive test was conducted Schmidt hammer and ultra-sonic method, the experimental parameter were concrete age, curing condition, test method and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

  • PDF

Statistical Estimation of Specified Concrete Strength by Applying Non-Destructive Test Data (비파괴시험 자료를 적용한 콘크리트 기준강도의 통계적 추정)

  • Paik, Inyeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • The aim of the paper is to introduce the statistical definition of the specified compressive strength of the concrete to be used for safety evaluation of the existing structure in domestic practice and to present the practical method to obtain the specified strength by utilizing the non-destructive test data as well as the limited number of core test data. The statistical definition of the specified compressive strength of concrete in the design codes is reviewed and the consistent formulations to statistically estimate the specified strength for assessment are described. In order to prevent estimating an unrealistically small value of the specified strength due to limited number of data, it is proposed that the information from the non-destructive test data is combined to that of the minimum core test data. The the sample mean, standard deviation and total number of concrete test are obtained from combined test data. The proposed procedures are applied to an example test data composed of the artificial numerical values and the actual evaluation data collected from the bridge assessment reports. The calculation results show that the proposed statistical estimation procedures yield reasonable values of the specified strength for assessment by applying the non-destructive test data in addition to the limited number of core test data.

Non destructive test of Fire-damaged reinforced concreted beams with high strength concrete (화재 피해를 입은 고 강도 철근콘크리트 휨 부재의 비파괴 검사)

  • 신미경;신영수;이차돈;홍성걸;김희선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.651-654
    • /
    • 2003
  • Non-destructive testing is essential in the inspection of alteration, repair and new construction in construction industry. This paper is to evaluate the strength variation of fire damaged concrete by non-destructive testing. Furthermore, It is to infer the recovery degree of residual strength of fire-damaged concrete. For this purpose, researchers are exploring the performance of non-destructive testing method using ultrasonic testing and Schmidt hammer in concrete specimens. Testing is performed four-times: before fire test, directly after fire test, after 20 days and after 60 days.

  • PDF

Destructive Test to Ensure Integrity of Composite Structure (파괴시험을 통한 복합재 구조물의 건전성 입증)

  • Yang, Hyun-Deok;Jeong, Duck-Young;Lee, Kyung-Cheol;Jin, Young-Kwon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.230-236
    • /
    • 2007
  • The quality control of composite structure includes inspection, testing and monitoring in all processes from receiving inspection to part fabrication. The purpose of these activities is to ensure that the design objectives are consistently achieved. The quality factors include material, receiving inspection, storage and shelf-life control, environmental control, testing, inspection and record control. This paper presents the process verification method using destructive test and quality control method in composite structure of aircraft. And it is believed that the destructive test will be basis to obtain a reliability of non-destructive test in complex composite structure and to ensure the design requirements in composite part.

  • PDF

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

Concrete Compressive Strength Prediction from Deteriorating Apartment Site (노후아파트 현장에서의 콘크리트 압축강도 추정)

  • Lee Kyu-Dong;Rhim Hong-Chul;Rhim Byeong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.155-158
    • /
    • 2006
  • Deduction of compressive strength in concrete members is very important to decide stability of structures. In this study, we compare the compressive strength of concrete between nondestructive test done to the building which was to be demolished at residential reconstruction site and destructive test of core specimen from the site. The result is more reliable because ore can compare the measurement of nondestructive tell with the result from destructive test using drilled cores. Compressive strength of each material was calculated with the result of rebound number test. In addition, we performed ultrasonic test for another result of compressive strength. And we made a comparative study of compressive strength of concrete drawn from both nondestructive and destructive tests.

  • PDF

Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior (식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

A Study on Application of Non-Destructive Equation for the Estimation of Concrete Strength (콘크리트의 압축강도 추정을 위한 비파괴시험식의 활용성 검토에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.129-136
    • /
    • 1999
  • In this paper, the new non-destructive equation will be proposed and evaluated in comparison to the other foreign's non-destructive equation. Through the comparisons cores strength of mock structure with compressive strength obtained from new non-destructive equation ; rebound hammer, ultra-sonic pulse velocity and combined method, it will be analyzed about application of non-destructive equation. The results are following. The new non-destructive equations follow ; (1) $F_c=9.5R{\cdot}N+62.5$ (2) $F_c=243Vp-739$ (3) $F_c=8.1R_o+205.3V_p-802$ where, $F_c$ : Compressive Strength, $R_o$ : Rebound Number. $V_p$ : Ultra-Sonic Pulse Velocity Trough the result of mock structure test, the combined method is superior to rebound method and ultra-sonic pulse velocity method in the estimation of concrete strength. In order to apply the non-destructive equation of concrete strength to the structures, it is necessary that we should be made process study on the non-destructive equation for estimation of concrete strength in the range, time and strength of application under long-term.

  • PDF

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar (지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구)

  • 김영근;이용호;정한중;신상범;조철현
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF