• Title/Summary/Keyword: Destruction and removal efficiency

Search Result 48, Processing Time 0.02 seconds

Evaluation Method on Destruction and Removal Efficiency of Perfluorocompounds from Semiconductor and Display Manufacturing

  • Lee, Jee-Yon;Lee, Jin-Bok;Moon, Dong-Min;Souk, Jun-Hyung;Lee, Seung-Yeon;Kim, Jin-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1383-1388
    • /
    • 2007
  • Recently, the semiconductor and display industries have tried to reduce the emissions of perfluorocompounds (PFCs) from the globally environmental regulation. Total amount of PFC emission can be calculated from the flow rate and the partial pressures of PFCs. For the precise measurement of PFC emission amount, the mass flow controlled helium gas was continuously injected into the equipment of which scrubber efficiency is being measured. The partial pressures of PFCs and helium were accurately measured using a mass spectrometer in each sample extracted from inlet and outlet of the scrubber system. The flow rates are calculated from the partial pressures of helium and also, PFC destruction and removal efficiency (DRE) of the scrubber is calculated from the partial pressure of PFC and the flow rate. Under this method, the relative expanded uncertainties of the flow rate and the partial pressures of PFCs are ± 2% (k = 2) in case the concentrations of NF3 and SF6 are as low as 100 μmol/mol.

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

UV-OXIDATIVE TREATMENT OF BIO-REFRACTORY ORGANIC HALOGENS IN LEACHATE: Comparison Between UV/O3, UV/H2O2, and UV/H2O2/O3 Processes

  • Qureshi, Tahir Imran;Kim, Young-Ju
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.84-90
    • /
    • 2006
  • UV-catalytic oxidation technique was applied for the treatment of bio-refractory character of the leachate, which is generally present in the form of adsorbable organic halogens (AOX). Destruction of AOX was likely to be governed by pH adjustment, quantitative measurement of oxidants, and the selection of oxidation model type. Peroxide induced degradation ($UV/H_2O_2$) facilitated the chemical oxidation of organic halides in acidic medium, however, the system showed least AOX removal efficiency than the other two systems. Increased dosage of hydrogen peroxide (from 0.5 time to 1.0 time concentration) even did not contribute to a significant increase in the removal rate of AOX. In ozone induced degradation system ($UV/O_3$), alkaline medium (pH 10) favored the removal of AOX and the removal rate was found 11% higher than the rate at pH 3. Since efficiency of the $UV/O_3$ increases with the increase of pH, therefore, more OH-radicals were available for the destruction of organic halides. UV-light with the combination of both ozone and hydrogen peroxide ($UV/H_2O_2$ 0.5 time/$O_3$ 25 mg/min) showed the highest removal rate of AOX and the removal efficiency was found 26% higher than the removal efficiency of $UV/O_3$. The system $UV/H2O_2/O_3$ got the economic preference over the other two systems since lower dose of hydrogen peroxide and relatively shorter reaction time were found enough to get the highest AOX removal rate.

Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification (CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증)

  • Kim, Hye-Min;Kwon, Sung-An;Lee, Sang-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

A Study on Destruction Potential of Sulfur Hexafluoride (SF6) Using High Ionization Energy (고이온화에너지를 이용한 육불화황 (SF6) 분해가능성 연구)

  • Ryu, Jae-Yong;Kim, Jong-Bum;Choi, Chang-Yong;Lee, Sang-Joon;Kwak, Hee-Sung;Yun, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.446-453
    • /
    • 2012
  • Destruction and removal efficiency (DRE) of $SF_6$ was tested with varying degrees of ionization and initial concentrations of $SF_6$. The applied dose of ionization energy varied from 0 to 400 kGy. The initial concentration of $SF_6$ gas also varied from 1,000 ppm to 2,500 ppm. In order to assess the effect of a residence time on DRE (Destruction and Removal Efficiency, %), experiments were also conducted at different irradiation times of 3, 5, 10, 15, and 20 sec, respectively. The DRE of $SF_6$ increased with an increasing amount of dose and current. Regardless of initial concentration of $SF_6$, 90% level of DRE was achieved by applying over 10 mA of electrical current.

Electrochemical Destruction of Cyanide Ions and Recovery of Zinc Ions from Electroplating Wastewater (도금폐수 중의 시안착이온의 전기화학적 분해 및 아연 회수에 관한 연구)

  • Niu, Lin;Ro, Byung-Ho;Jung, Cheul;Lee, Yong-Ill
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.699-704
    • /
    • 2000
  • A study has been made for the electrochemical destruction of cyanide ions and removal of zinc ions from a simulated electroplating wastewater by the use of a platinum platized-titanium anode and a stainless steel cathode. Several experimental parameters, including electrolysis time, cell current, additives, and chloride concentration, have been investigated and used for efficient destruction of cyanide waste and removal of zinc ions from aqueous solutions. It was found that cell current and type of additives gave great effects on the destruction of cyanide ions and removal of zinc ions. The optimized conditions (electrolysis time: 1hr, current: 12A, additive: 0.5 M NaCl) have been defined to destroy cyanide ions and remove zinc ions with high efficiency and low operation cost. The proper reaction mechanism leading to the destruction of cyanide on the anode has also been discussed.

  • PDF

A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries (반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구)

  • Jang, Sung-Su;Han, Jae-Kook;Cho, Hyun-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.88-95
    • /
    • 2017
  • The usage of toxic gas in Korea is increasing in the development of high-tech industries such as semiconductors, displays and solar panels. The recent survey of domestic toxic gas consumption indicates an increase in annual average of 12.4 percent, but it is still focused on usage, and it is negligent in safety and treating the post. In September 2012, an accident occurred in Gu-mi involving hydrofluoric acid leak demonstrates the absence of safety management. Due to the incident, the government, industry and academia have been interested in chemical substances(toxic gas), and the government-led safety management has been established and implemented, but there are still a lot of safety blind spots. The purpose of this study is to develop effective measurement methods for the destruction or removal efficiency of gaseous materials emitted from the Scrubber used in the semiconductor and display industries. Also, this study demonstrated how toxic gas facilities can be applied without error by verification test for the measurement method guideline of the destruction or removal efficiency of the green-house gas reduction facility in the semiconductor and display industries used by the National Institute of Environmental Research and the UNFCCC, and suggested the differentiated measurement methods for toxic gas reduction facilities, and the third party certification for safety facilities is needed to prevent toxic gas accidents.

Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials (건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해)

  • Jo Wan-Kuen;Chun Hee-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

A Numerical Simulation of Hazardous Waste Destruction in a Dump Incinerator (덤프 소각기에서 유해폐기물 분해에 대한 수치해석)

  • 전영남;정오진;채종성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.665-674
    • /
    • 2000
  • A major source of the hazardous waste generated is from chemical industries producing plastics, herbicides, pesticides and chlorinated solvents. All of these processes produce a class if hazardous waste termed the chlorinated hydrocarbons(CHCs), either directly or from undesirable side reactions. In this study, we investigated the destruction characteristics of hazardous waste through incineration. A nonequilibrium combustion model was used to describe the effect of the chemical kinetics due to the flame inhibition characteristics of $CCl_4$ which was used as the surrogate of hazardous waste. A parametric screening studies was made in a dump incinerator proposed in this study. The dump incinerator showed high $CCl_4$ DRE(Destruction and Removal Efficiency) as 5 nines. $CCl_4$/CH$_4$ ratio appeared to be most important in the destruction of $CCl_4$ through incineration.

  • PDF