• Title/Summary/Keyword: Design-driven

Search Result 1,655, Processing Time 0.034 seconds

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Design and Operation of Self-Powered Arduino System for Solar Energy Harvesting (태양에너지 하베스팅을 위한 자가발전 아두이노 시스템의 설계 및 동작)

  • Yoon, Il Pyung;Myeong, Cho Seung;An, Ji Yong;Oh, Seok Jin;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.483-487
    • /
    • 2022
  • In this paper, we design a self-powered Arduino system for solar energy harvesting and explain its operation. To perform the operation, the Arduino system senses the amount of solar energy that changes every moment and adjusts the ratio of the active mode and sleep mode operation time according to a given solar light intensity. If the intensity of sunlight is strong enough, the Arduino system can be continuously driven in active mode and receive sufficient power from sunlight. If not, the system can run in sleep mode to minimize power consumption. As a result, it can be seen that energy consumption can be minimized by reducing power consumption by up to 81.7% when using sleep mode compared to continuously driving active mode. Also, when the light intensity is at an intermediate level, the ratio between the active mode and the sleep mode is appropriately adjusted according to the light intensity to operate. The method of self-control of the operating time ratio of active mode and sleep mode, proposed in this paper, is thought to be helpful in energy-efficient operation of the self-powered systems for wearables and bio-health applications.

Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method (외삽법을 이용한 풍화암에 근입된 현장타설말뚝의 극한하중 예측)

  • Jung, Sung Jun;Lee, Sang In;Jeon, Jong Woo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.145-151
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the ultimate load of the pile is attained. If a reliable ultimate load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a method for judging the reliability of the ultimate load of piles that is obtained from extrapolated load test data. To this aim, ten static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the ultimate capacity was re-determined for each extrapolated data by the Davisson method (1972). Statistical analysis was performed on the reliability of the re-evaluated ultimate loads. The results showed that if the ratio of the maximum-available displacement to the predicted displacement exceeds 0.6, the extrapolated ultimate load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed method of judgment was also verified with static load test data of driven piles.

Effects of Service Quality on Customer Satisfaction and Reuse Intention of Chinese Fashion Product Live Commerce Using SERVQUAL Model in Internet of Things Environment -Focusing on Female College Students in Changchun, China- (사물인터넷 환경에서의 SERVQUAL 모델을 이용한 중국 패션제품 라이브커머스의 서비스품질이 고객만족도 및 재사용 의도에 미치는 영향 -중국 창춘시 여대생을 중심으로-)

  • Mo Liu;Young-Sook Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • China's huge population and industrial diversification have driven increased demand for IoT, and in a social environment where IoT technology is changing all aspects of personal and family life, including smart shopping, this study was conducted in Changchun, China. The study aimed to find ways to meet the Fashion needs of female college students living in the country and promote the development of the fashion product industry by improving the service quality of Chinese fashion product live commerce. The analysis results are as follows. First, the service quality characteristics of Chinese fashion product live commerce had a positive effect on customer satisfaction. Second, the service quality characteristics of Chinese fashion product live commerce had a positive effect on reuse intention. Third, customer satisfaction had a positive effect on reuse intention. Based on these results, it can be concluded that improving the service quality of live commerce can directly promote product sales and create direct economic benefits. In addition, based on the results of the study, which show that the service quality of fashion product live commerce affects customer satisfaction and reuse intention, it is judged that it will provide useful information in establishing marketing strategies for live commerce platforms by region and target.

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF

Design of the self-oscillation UV flash lamp power supply and the characteristic of its operation using self-resonance of the transformer (트랜스포머의 자가 공진(Self-Resonance)특성을 이용한 자가 발진(Self-Oscillation) UV(Ultra Violet) 발생 플래시램프 전원장치설계 및 그 동작 특성)

  • Kim, Shin-Hyo;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.48-55
    • /
    • 2014
  • These Xenon flashlamp power supply for Ultra Violet has converter with high voltage conversion ratio. General model is composed of transformer with high voltage conversion ratio and voltage doubler rectifier circuit. Purpose of power supply leads dielectric breakdown of Xenon flashlamp and passes current rapidly. When passing current, it has to limit current to avoid over-heat, damage of electrode and acceleration of gas oxidation which are cause of performance degradation of lamps. Generally, inductors and resistors, which are called as "Ballast," are used to limit currents. Generally, Transformer has high turn ratio to make high voltages. But we can get high voltages using the transformer with low turn ratio which is driven with self resonance. Also, an advantage of self resonance is to make a circuit simply through impedance of transformer in resonance frequency which filters output voltage. As using an unique impedance of transformer, the circuit does not need other impedance elements like the ballast. So the power supply assures high efficiency of the arc discharge.

Developing Bike Road Design Alternatives Considering Land Use Characteristics (토지이용을 고려한 자전거도로 설계대안의 개발)

  • Kang, Kyeong-Mi;Kim, Eung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.93-102
    • /
    • 2011
  • The Korean government recently has focused on variety of policies to promote the use of bikes to control the emission of carbon. However, bike facilities with no regard to the safety and comfort of bike drivers has made inefficient bike roads. Also, the accidents related to bikes have increased rapidly. This study proposes the proper types of the bike roads considering land use and bike driver characteristics. The elements classifying the bike driver characteristics are driven through oneway ANOVA and cluster analysis. It is found that the types of the bike roads can be classified by the ratio of child and elderly bikers and the ratio of heavy trucks. Also, the each type is characterized by the land use types such ad residential, commercial and industrial areas through cluster analysis. According to the results of the cluster analysis, installation of bike roads in residential area needs to consider convenience and safety simultaneously. It is also found that convenience should be the most considerable factor in commercial area. Lastly, safety should be considered in industrial area. Recommended methodology and bike road type based on the land use and bike driver's characteristics can be useful to develop bike-friendly environments and increase mode share of bikes.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

A Research on Forecasting Change and Service Direction for the Future Mobility System (미래 모빌리티 체계 변화 예측 및 서비스 방향 연구)

  • Kwon, Yeongmin;Kim, Hyungjoo;Lim, Kyungil;Kim, Jaehwan;Son, Woongbee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.100-115
    • /
    • 2020
  • The manufacturing-oriented mobility system is being reorganized around the future mobility system represented by electrification, sharing, and autonomy, driven by the social demand for sustainable development. Changes in future mobility systems are expected to accelerate thanks to advances in IT technology. To this end, this study conducted an expert survey (N=23) to predict the direction of changes in the future mobility system. Through the survey, 'mobility sharing' was selected as a key factor in the future mobility system among four future mobility. In addition, 'safety' was selected as the most important service factors in future mobility system among eight future mobility service factors. We hope that the results of this study will be used as basic information to design policies and service directions of preparation for the future mobility system.

Design of 0.5V Electro-cardiography (전원전압 0.5V에서 동작하는 심전도계)

  • Sung, Min-Hyuk;Kim, Jea-Duck;Choi, Seong-Yeol;Kim, Yeong-Seuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • In this paper, electrocardiogram (ECG) analog front end with supply voltage of 0.5V has been designed and verified by measurements of fabricated chip. ECG is composed of instrument amplifier, 6th order gm-C low pass filter and variable gain amplifier. The instrument amplifier is designed to have gain of 34.8dB and the 6th order gm-C low pass filter is designed to obtain the cutoff frequency of 400Hz. The operational transconductance amplifier of the low pass filter utilizes body-driven differential input stage for low voltage operation. The variable gain amplifier is designed to have gain of 6.1~26.4dB. The electrocardiogram analog front end are fabricated in TSMC $0.18{\mu}m$ CMOS process with chip size of $858{\mu}m{\times}580{\mu}m$. Measurements of the fabricated chip is done not to saturate the gain of ECG by changing the external resistor and measured gain of 28.7dB and cutoff frequency of 0.5 - 630Hz are obtained using the supply voltage of 0.5V.