• Title/Summary/Keyword: Design-dependent load

Search Result 184, Processing Time 0.028 seconds

A Study on Ground Response Curve for Tunnel Design (터널 설계를 위한 지반응답곡선)

  • Lee, Song;Ahn, Sung-Hak;Ahn, Tae Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.181-190
    • /
    • 2003
  • The convergence-confinement method is an attempt to evaluate tunnel stability conditions by means of a mathematical model and a ground response curve. In this study, the convergence-confinement method by numerical model was examined. This method don't need the basic assumptions for a mathematical model. Also This is applicable to general tunnel. According to the results of this study, the change of shotcrete stiffness and the load-distribution ratio used for 2-Dimension numerical analysis are not signficant factors. The ground response curve and the support reaction curve are mutually dependent. Especially the support reaction curve depends upon the ground response curve. The mechanism of tunnel must be analyzed by the interaction between support and ground. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management

Analysis Study of Seasonal Performance Factor for Residential Building Integrated Heat Pump System (주거용 건물에서의 히트펌프 시스템 연성능 평가에 관한 연구)

  • Kang, Eun-Chul;Min, Kyoung-Chon;Lee, Kwang-Seob;Lee, Euy-Joon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • Heat pump unit performance is represented by the COP(Coefficient of Performance) and expressed by the one point design condition according to KS C 9306. However, when heat pump operated to the real buildings, the simulations are changed continuously according to the actual weather conditions, the building load and heat pump source conditions. The purpose of this paper is to evaluate the APF(Annual performance factor) for a climate dependent building integrated air-to-air heat pump system in major cities in Korea. TRNSYS simulation tool with an international MV standard based IPMVP 4.4.2 was utilized to perform the annual performance analysis. The APF with the multi-performance data based method was calculated as 2.29 for Daejeon residential building case while Busan residential building case appeared as the highest with 2.36.

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF

Spot Weld Fatigue Life Prediction of Auto Set Belt Anchors Using $K_e$ (K_e에 의한 차량 안전벨트 앵커의 점용접 피로수명 예측)

  • Kim, Nam-Ho;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.701-709
    • /
    • 2000
  • As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. Recasting the load vs. fatigue life relationships experimentally obtained, we predicted the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot. We therefore attempt to evaluate the effectiveness and validity of $K_e$ in predicting the fatigue life of auto seat belt anchor panel. We first establish finite element models reflecting the actual mechanical behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we then obtain the effective crack driving parameter $K_e$ composed of its ductility -dependent modal components. It is confirmed that the $K_e$ concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

Simplified 2D Analysis for Suspension Bridges Subject to Wind Excitation (현수교 풍진동에 관한 2D 간단해석 및 변수연구)

  • Kim, Woo Seok;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2013
  • In this paper, 2D simple analyses were performed in order to predict the large torsional oscillations in a suspension bridge based on Makenna and Tuama model(2001). The existing model(Makenna and Tuama, 2001) has shown unrealistic results as the wind speed increases and frequency decreases. Furthermore, resonance could not be simulated by the existing model. Therefore, in this study, new model was proposed with a consideration of the torsional resistance. The vertical and rotational behaviors of the deck in the suspension bridge were analyzed. Analysis results showed that at first vertical oscillations were observed and it was gradually transformed to the rotation oscillations. With the consideration of the torsional resistance, it was shown that vertical behavior were stabilized as time passed. However, the rotational behavior was not stabilized and was kept until the end of analysis. Beat periods decreased while the wind speed increased. The resonance of the rotational mode was dependent to the rotational resistance. Obtained results could be applied for the design of the suspension bridge under the wind load.

A Novel Procedure for Mooring Chain Fatigue Prediction based on Maximum Principal Stress Considering Out-of-Plane and In-Plane Bending Effects (면내외 굽힘 효과를 고려한 최대 주응력 기반 계류 체인 피로 평가 기법 개발)

  • Choung, Joonmo;Han, SeungOh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.237-248
    • /
    • 2016
  • As OPB and IPB moment-induced fatigue damage on mooring chain links were reported for a offloading buoy, verification of OPB and IPB fatigue has been a key engineering item in offshore structure mooring design. Mathematical and physical features of the conventional approach which was mainly explained in BV guideline are reviewed and disadvantages of the conventional approach are addressed in terms of stress proportionality and nonlinearity of OPB and IPB moments. In order to eradicate these disadvantages, a novel approach is newly proposed which is able to dispel apprehension on stress proportionality and is not dependent of nonlinearities of OPB and IPB moments. Significant differences between two approaches are suggested by comparing relations of OPB moment versus OPB interlink angle and IPB moment versus IPB interlink angle. For periodic OPB tension angle processes having three different OPB angle ranges with a simple irregular tension process, fatigue damage calculation reveals that OPB moment-induced fatigue damage has dominant portion to total fatigue damage. Comparative studies between two approaches also show that the conventional approach based on BV guideline predicts fatigue damage far conservatively since it assume unrealistic high stress concentration factor for tension load. Meanwhile IPB moment-induced fatigue damage is negligible compared to tension-induced fatigue damage.

An Experimental Study on the Long-Term Deflection of Concrete Beams with GFRP Rebars (FRP 보강 콘크리트 보의 장기처짐에 관한 실험연구)

  • Park, Ji-Sum;You, Young-Jun;Park, Young-Hwan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • This study is to investigate experimentally the long-term deflection of concrete beams with glass fiber reinforced polymer (GFRP) reinforcing bars subjected to the sustained flexural load for periods of up to 6 months. A total of four beams were tested. All beams were designed with net span of 2,700 mm and rectangular cross-section of 200 mm width and 300 mm depth. From the test results the time-dependent deflection of concrete beams with GFRP bars was about 40 to 70% of the initial deflection. As well as this paper compares the long-term deflection calculated by 440.1R-06 design guide and that of tested beams. The comparison indicated that the calculated long-term deflection overestimate the observed long-term deflection of concrete beams with FRP rebars.

  • PDF

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

크리프와 건조수축을 고려한 철근콘크리트 기둥과 동바리의 축력 재분배 해석법

  • 김선영;이태규;김진근;이수곤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.629-636
    • /
    • 2001
  • To apply the research results to the design and the construction of the high rise buildings, long-term behavior of reinforced concrete structure have been widely studied. However, shoring and reshoring at early ages have not been considered in the most of studies. The removal of forms and shores has been dealt with one construction sequence. i.e. the deformation occurred at the early age before the removal of shore has been neglected. In this paper, two-dimensional frame analysis program for long-term behavior of reinforced concrete was developed. In the developed program, construction sequence including the settlement and the removal of shores is considered to predict axial force variation due to forms ,shores, and time-dependent concrete stiffness. Analysis results show that the time-dependent axial force of shores is reduced, and the redistributed axial force of the interior column is greater than the value by elastic analysis and that of the exterior column is smaller. In order to demonstrate the validity of this program, the test frame was constructed in sequence of the placement of concrete, form removal, reshoring, shore removal, and the application of additional load. The proposed program predicts experimental results well.