DOI QR코드

DOI QR Code

Simplified 2D Analysis for Suspension Bridges Subject to Wind Excitation

현수교 풍진동에 관한 2D 간단해석 및 변수연구

  • Kim, Woo Seok (Department of Civil Engineering, Chungnam National Univ.) ;
  • Lee, Jaeha (Department of Civil Engineering, Korea Maritime and Ocean Univ.)
  • Received : 2013.11.01
  • Accepted : 2013.11.20
  • Published : 2013.12.31

Abstract

In this paper, 2D simple analyses were performed in order to predict the large torsional oscillations in a suspension bridge based on Makenna and Tuama model(2001). The existing model(Makenna and Tuama, 2001) has shown unrealistic results as the wind speed increases and frequency decreases. Furthermore, resonance could not be simulated by the existing model. Therefore, in this study, new model was proposed with a consideration of the torsional resistance. The vertical and rotational behaviors of the deck in the suspension bridge were analyzed. Analysis results showed that at first vertical oscillations were observed and it was gradually transformed to the rotation oscillations. With the consideration of the torsional resistance, it was shown that vertical behavior were stabilized as time passed. However, the rotational behavior was not stabilized and was kept until the end of analysis. Beat periods decreased while the wind speed increased. The resonance of the rotational mode was dependent to the rotational resistance. Obtained results could be applied for the design of the suspension bridge under the wind load.

본 연구에서는 풍진동에 대한 현수교의 거동을 예측하기 위하여 바닥판의 비틀림강성을 고려하여 Mckenna and Tuama 모델(2001)을 개선한 2D 간단해석 방법을 제안하였다. 기존의 모델은 풍속이 증가할수록, 진동수가 낮아질수록 비정상적인 값을 나타내고, 비틀림모드의 공진현상을 묘사할 수 없었다. 이에 본 연구에서는 비틀림강성을 고려하여 풍속에 따른, 진동수에 따른 비틀림진동을 분석하였다. 해석결과 진동 초기의 수직모드는 점차 비틀림모드로 전이되며 수직모드는 안정적으로 진동하는 것을 확인하였다. 또한 비틀림강성 효과를 고려하여 해석을 수행한 결과 수직모드는 시간이 경과함에 따라 안정화되는 모습을 보이나 비틀림 진폭은 일정시간(약 200초) 이후 나타나기 시작하여 비틀림각을 지속적으로 유지하였으며 맥놀이 주기는 풍속이 증가하면서 점차 감소하였다. 비틀림 강성에 따라 서로 다른 풍하중의 풍속과 진동수에 비틀림모드의 공진현상을 나타내므로 실제 설계에는 반드시 이러한 영향이 고려되어야 할 것이다.

Keywords

References

  1. Abdel-Ghaffar, A.M. (1980) Vertical Vibration Analysis of Suspension Bridges, Journal of Struct. Div., 106(ST10), pp.2053-2075.
  2. Doole, S.H., Hogan, S.J. (2000) Non-linear dynamics of the Extended Lazer-McKenna Bridge Oscillation Model, Dyn. Stab. Syst., 15, pp.43-58. https://doi.org/10.1080/026811100281929
  3. Kim, M., Rho, B. (1997) Vertical Free Vibration of Suspension Bridges Considering Shear Deformation and Rotary Inertia-Analytic Method, Journal of KSCE, 17(1-5), pp.715-726.
  4. McKenna, P.J. (1999) Large Torsional Oscillation in Suspension Bridges Revisited: Fixing an Old Approximation. Amer. Math. Monthly, 106, pp.1-18. https://doi.org/10.2307/2589581
  5. McKenna, P.J., Tuama, C.O. (2001) Large Torsional Oscillations in Suspension Bridges Visited Again: Vertical Forcing Creates Torsional Responses. Amer. Math. Monthly., 108, pp.738-745. https://doi.org/10.2307/2695617
  6. Sauer, T. (2012) Numerical Analysis, 2nd Edition, pp.646.