• Title/Summary/Keyword: Design work

Search Result 8,378, Processing Time 0.04 seconds

An Awareness Analysis on the Design for Safety of Construction Project and Its Improvement Measures (건설프로젝트의 설계안전성 검토에 대한 인식 분석 및 개선방안)

  • Shin, Won-Sang;Son, Chang-Baek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.351-359
    • /
    • 2019
  • Recognizing that the fundamental cause of construction safety accidents was a lack of safety management activities in the planning and design phases, the government made the Design for Safety (DFS) system mandatory in May 2016. However, awareness among ordering parties and designers regarding this system is significantly low, and the system has not been properly established due to reasons such as the need for additional work and a lack of professional manpower. In this study, the awareness of ordering parties and designers of the DFS system was analyzed through a survey, various problems in DFS work execution were identified and measures for improvement were presented. Measures to improve the efficiency in DFS work execution involve the discovery of risk factors and establishment of countermeasures, and here the establishment of a DFS work support system that enables the sharing of information between institutions is the most urgent priority. In addition, it is also urgently necessary to establish a dedicated organization in charge of DFS work, cultivate professional manpower, develop the relevant education programs and establish a proper cost calculation standard for DFS work execution by design offices.

Human Factors Design Review of CFMS for Improving the Safety of Nuclear Power Plant (원전의 안전성 제고를 위한 CFMS의 인간공학적 설계 검토)

  • 이용희;정광태
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.201-208
    • /
    • 1997
  • In order to improve the safety of nuclear power plant, we performed a human factors review for the CFMS(Critical Function Monitoring system) design of nuclear power plant. Three works were performed in this study. In first work, we developed human factors engineering program plan(HFEPP) and human factors engineering verification and validation plan (HFE-V & V plan) to effectively perform CFMS design and review. In second work, we identified human engineering discrepancies(HEDs) for CFMS design through human factors design review and proposed those resolutions. In the third work, we developed the evaluation and management methodology for identified KEDs. Methodology developed in this study can be used in other complex system as well as in CFMS design review.

  • PDF

The Improvement Plan of Design Process by Case Study of Steel Structural Work (철골공사 현장조사를 통한 설계프로세스 개선방안)

  • 방성원;오승준;김진호;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying tine and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

  • PDF

The Improvement Plan of Design Process by Case Study of Steel Structural Work (현장조사를 통한 철골공사 설계프로세스 개선방안)

  • Bang, Sung-Won;Kim, Jin-Ho;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Steel frame construction is divided into subsidiary materials with column, beam, girder and bracing. After these are processed in factory for using installing in construction field. These prefabricated furniture is very important in accordance with design drawing about processing and prefabricating. In the case of design process using information transmission in blueprint, omission of material number, processing measure and finishing material, or discordance of each structure drawing and selecting incongruent structural material generated an error in the process of design. These error caused delaying time and increasing cost and increasing safety accident in the steel-structure work operating process. therefore, design process should consider problem of operating process.

Optimum Bar-feeder Support Positions of a Miniature High Speed Spindle System by Genetic Algorithm (유전 알고리듬을 이용한 소형 고속스핀들 시스템의 바-피더 지지부의 위치 최적선정)

  • Lee, Jae-Hoon;Kim, Mu-Su;Park, Seong-Hun;Kang, Jae-Keun;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.99-107
    • /
    • 2009
  • Since a long work piece influences the natural frequency of the entire system with a miniature high speed spindle, a bar-feeder is used for a long work piece to improve the vibration characteristics of a spindle system. Therefore, it is very important to design optimally support positions between a bar-feeder and a long work piece for a miniature high speed spindle system. The goal of the current paper is to present an optimization method for the design of support positions between a bar-feeder and a long work piece. This optimization method is effectively composed of the method of design of experiment (DOE), the artificial neural network (ANN) and the genetic algorithm (GA). First, finite element models which include a high speed spindle, a long work piece and the support conditions of a bar-feeder were generated from the orthogonal array of the DOE method, and then the results of natural vibration analysis using FEM were provided for the learning inputs of the neural network. Finally, the design of bar-feeder support positions was optimized by the genetic algorithm method using the neural network approximations.

The Optimum Design Conditions of Stirling Engines Using The Ideal Adiabatic Model (이상적인 단열모델에 의한 스터링기관의 최적설계조건)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.656-663
    • /
    • 1990
  • To investigate the optimum design conditions of Stirling Engines at the preliminary design stage, comparative study between adoabatoc analysis based on an approximate analytical solution to the Ideal Adiabatic Model and the existing isothermal analysis has been carried out. The optimum phase angle obtained from adiabatic analysis to achieve the maximum work with given combination of design parameters is greater than that from isothermal analysis, while the optimum swept volume ratio is smaller. Effect of variation in the temperature ratio on the work parameter is proved to be stronger in adiabatic analysis. On the contrary, the work parameter by adiabatic analysis is less sensitive to a change in the dead volume ratio. Especially in adiabatic analysis there exists the optimum dead volume ratio maximizing the work parameter, which may provide a lower limit of it. Considering that the adiabatic model is more reasonable, signifiant differences between two methods lead to the conclusion that adiabatic analysis is preferable to isothermal one for the preliminary design of Stirling Engines.

Individual Control over the Physical Work Environment to Affect Creativity

  • Samani, Sanaz Ahmadpoor;Rasid, Siti Zaleha Binti Abdul;Sofian, Saudah Bt
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.94-103
    • /
    • 2015
  • The purpose of this paper is to provide a review of the background information regarding to the impact of personal control over the physical work environment on satisfaction with work environment and creativity at work. Today creativity has a significant and special place in business especially in innovative organizations which need creative people to generate new, and useful ideas for produce new products, services, work methods, systems etc. Moreover the design and appearance of workspace and individual ability to control the ambient conditions of the workplace have significant effect on their behavior, satisfaction and overall outcome including creativity. So the result of this study will contribute towards enhancing the understanding of the effect of office design to enhance employees' creativity.

Development and Working Efficiency of Supporting Program for the Parametric Electrical Outfit Production Design of Offshore Plant Based on PML (PML 기반 파라메트릭 해양플랜트 전장생산설계 지원 프로그램 개발 및 업무 효율성 연구)

  • Kim, Hyun-Cheol;Kim, Jong-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Recently, because of the global recession of the offshore plant industry and low-cost orders, there has been increasing interest in strengthening the competitiveness of domestic companies for the design and production technologies of offshore plants. However, in the offshore plant design field, the Plant Design Management System (PDMS), which is a 3D CAD program for plant layout developed by AVEVA Marine, is already commonly used as offshore plant design software and widely used in large domestic shipyards and cooperative design companies. Under this background, we have been thinking about ways to design better with the existing software. In this study, we developed a parametric design program to maximize the efficiency and reduce the working time for offshore plant electrical outfit production design based on the Programmable Macro Language (PML) of PDMS. We also examined its performance. By applying the developed program to the offshore plant module selected as an application example, it was confirmed that a 50% improvement in the work efficiency of cable tray design could be obtained compared with the existing method, with work efficiency improvements of 80% or more in other field design work.

A PROPOSAL OF CONSTRUCTABILITY REVIEW IN THE BASIC DESIGN STEP FOR DESIGN-BUILD PROJECTS

  • Sung-Wook Choi;Young-Woong Song;Yoon-Ki Choi;Dong-Woo Shin;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1150-1153
    • /
    • 2005
  • The orders of Design-Build Delivery System (DBDS) in a large and public construction project have been increasing. Single Source Responsibility (SSR) for design and construction, which contributes to quality improvement of design and construction, has been performed. The DBDS performs SSR for design and construction, but, it has not maximized effect because of the dissatisfied alternative analysis procedures which are based on constructability evaluation and the information system in the design step. In this research, Constructability Evaluation Factors (CEFs) that must be evaluated, investigated, and reflected in the basic design step for design-build projects. The CEF proposed and the business process of each conductor has been systematized. To propose constructability evaluation factors, first classify drawing information by the constructability evaluation sphere. CEFs must be proposed to evaluate factors according to interference among work items. Second, applicable CEFs must be classified by preference ranking and weight. Third, the values of constructability factors in accordance with building elements and work items, need to be calculated. Finally, the CEFs proposal will support rational decision making, design cost reduction, and quality improvement through the values for constructability of building elements and work items.

  • PDF

Effectiveness of Fatal Fall Accident Prevention through Design for Safety in Construction Industry (건설공사의 추락재해예방을 위한 설계안전기법의 효과성 분석)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • Construction industry is considered as one of the most high-risk industries for work-related injuries and fatalities, accounting for more than half of fatalities in Korea. Advanced countries have recognized the critical role of designers in preventing construction accidents and have established regulations on design for safety. In line with this, the Korean government have also implemented regulations that require owners and designers to review the safety of design outcomes. However, it has been observed that designers face challenges in identifying hazards and integrating design solutions at the design stage mainly due to their shortage of required knowledge and skills. This study aimed to examine design solutions that can be applied to prevent fall accidents in the construction industry, and to establish a relationship between these solutions and fatal fall accidents occurred over the past three years in Korea. This study also analyzed the relationships of four variables (construction type, cost, work type, and fall location) with design solutions. The results indicated that all four variables have significant relationships with design solutions, with fall location showing the strongest relationship. The design solutions and their relationships with fatal fall accidents identified in this study can be utilized in identifying hazard and integrating design solutions to ensure design for safety.