• Title/Summary/Keyword: Design weight value

Search Result 500, Processing Time 0.023 seconds

Approximate Multi-Objective Optimization of Stiffener of Steel Structure Considering Strength Design Conditions (강도조건을 고려한 강구조물 보강재의 다목적 근사최적설계)

  • Jeon, Eungi;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.192-197
    • /
    • 2015
  • In many fields, the importance of reducing weight is increasing. A product should be designed such that it is profitable, by lowering costs and exhibiting better performance than other similar products. In this study, the mass and deflection of steel structures have to be reduced as objective functions under constraint conditions. To reduce computational analysis time, central composite design(CCD) and D-Optimal are used in design of experiments(DOE). The accuracy of approximate models is evaluated using the $R^2$ value. In this study, the objective functions are multiple, so the non-dominant sorting genetic algorithm(NSGA-II), which is highly efficient, is used for such a problem. In order to verify the validity of Pareto solutions, CAE results and Pareto solutions are compared.

Structural Topology Design Using Compliance Pattern Based Genetic Algorithm (컴플라이언스 패턴 기반 유전자 알고리즘을 이용한 구조물 위상설계)

  • Park, Young-Oh;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.786-792
    • /
    • 2009
  • Topology optimization is to find the optimal material distribution of the specified design domain minimizing the objective function while satisfying the design constraints. Since the genetic algorithm (GA) has its advantage of locating global optimum with high probability, it has been applied to the topology optimization. To guarantee the structural connectivity, the concept of compliance pattern is proposed and to improve the convergence rate, small number of population size and variable probability in genetic operators are incorporated into GA. The rank sum weight method is applied to formulate the fitness function consisting of compliance, volume, connectivity and checkerboard pattern. To substantiate the proposed method design examples in the previous works are compared with respect to the number of function evaluation and objective function value. The comparative study shows that the compliance pattern based GA results in the reduction of computational cost to obtain the reasonable structural topology.

Reliability-Based Optimum Design for Tubular Frame Structures (골조 파이프 구조물의 최적신뢰성 설계)

  • 백점기
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

A Study on the Flow Coefficient Test and Numerical Analysis about 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump (보일러 급수펌프용 1500lb 고차압 제어밸브 유량시험 및 수치해석에 관한 연구)

  • Lee, Kwon-Il;Jang, Hoon;Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.541-547
    • /
    • 2022
  • Before making a prototype, we predicted the inlet/outlet differential pressure and flow coefficient, which are the most basic design data for the valve through the design and numerical analysis of the trim, which is the most important in the localization development of the 1500Ib high differential pressure control valve used for boiler feed water. As a result, the design value and the analysis value were found to be about 98% similar. The flow field within the fluid velocity of 23m/s to prevent cavitation was also found. The result of the numerical analysis on thermal stress due to the characteristics of valves exposed to high temperatures showed that it was found to be about 18% less than the allowable stress of the bolt fixing the trim. When all loads such as pressure, self-weight, and vibration are applied, however, it is judged to go beyond the currently calculated thermal stress, exceeding the allowable stress.

Link Weight Discrimination Analysis based Design of Input Nodes in ANN Models for Bankruptcy Prediction: Strong-Linked Neurons Selection and Weak-Linked Neurons Elimination Approach (연결강도판별분석에 의한 부도예측용 신경망 모형의 입력노드 설계 : 강체연결뉴론 선정 및 약체연결뉴론 제거 접근법)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.469-477
    • /
    • 2000
  • 본 연구에서는 부도예측용 인공신경망 모형의 입력노드를 선정하기 위한 방법론으로 연결강도판별분석(Link Weight Discrimination Analysis)에 의한 약체뉴론제거법(Weak-Linked Neuron Elimination)과 강체뉴론선택법 (Strong-Linked Neurons Selection)을 제안한다. 연결강도판별분석이란 적절한 학습이 끝난 인공신경망 모형에서 입력노드와 연결되는 가중치의 합에 대한 절대값인 연결강도 판별식(Link Weight Discrimination)에 의해 해당 입력노 드가 출력노드에 미치는 영향정도를 분석하는 것이다. 한편 강체연결뉴론선택법은 선처리를 통해 얻어진 학습된 인공신경망의 입력노드 가운데서 연결강도판별식이 큰 뉴론만을 본처리의 입력노드로 선정하는 것인데 비해 약체연결뉴론제거법은 연결강도판별식이 일정 값 즉, 연결강도 판별임계치(Link Weight Discrimination Cut off Value) 보다 낮은 입력노드를 제외하고 나머지 입력노드만을 본처리의 입력노드로 선정하는 것이다. 본 연구에서는 강체연결뉴론선택법과 약체연결뉴론제거법을 각각 정형적인 방법론으로 정립하고 이 방법론에 의해 부도예측용 인공신경망을 구축하여 각각의 모형을 의사결정트리에 의해 선정된 인공신경망 모형 및 선처리 과정을 거치지 않은 인공신경망 모형과 성능을 비교, 분석하여 본 연구에서 제안한 방법론의 타당성을 제시하였다.

  • PDF

The Level Control System Design of the Nuclear Steam Generator for Robustness and Performance

  • Lee, Yoon-Joon;Lee, Heon-Ju;Kim, Kyung-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • The nuclear steam generator level control system is designed by robust control methods. The feedwater controller is designed by three methods of the H$\infty$, the mixed weight sensitivity and the structured singular value. Then the controller located on the feedback loop of the level control system is designed. For the system performance, the controller of simple PID whose coefficients vary with the power is selected. The simulations show that the system has a good performance with proper stability margins.

  • PDF

The Characteristics of Silicon Oxides for Artificial Neural Network Design (인공신경회로망 설계를 위한 실리콘 산화막 특성)

  • Kang, C.S.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.475-476
    • /
    • 2007
  • The stress induced leakage currents will affect data retention in synapse transistors and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor made by thin silicon oxides has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhibitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhibitory state.

  • PDF

Tolerance Optimization of Design Variables in Lower Arm by Using Response Surface Model and Process Capability Index (반응표면모델과 공정능력지수를 적용한 로워암 설계변수의 공차최적화)

  • Lee, Kwang Ki;Ro, Yun Cheol;Han, Seung Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • In the lower arm design process, a tolerance optimization of the variance of design variables should be preceded before manufacturing process, since it is very cost-effective compared to a strict management of tolerance of products. In this study, a design of experiment (DOE) based on response surface model (RSM) was carried out to find optimized design variables of the lower arm, which can meet a given requirement of probability constraint for the process capability index (Cpk) of the weight and maximum stress. Then, the design space was explored by using the central composite design method, in which the 2nd order Taylor expansion was applied to predict a standard deviation of the responses. The optimal solutions satisfying the probability constraint of the Cpk were found by considering both of the mean value and the standard deviation of the design variables.

The Effect of Motives of Ramie Fabrics on Sensory Image Evaluation (모시 소재의 문양에 따른 감성 이미지 평가)

  • Lee, Soon-Im;Kim, Jae-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.6
    • /
    • pp.1015-1026
    • /
    • 2006
  • The purpose of the study were to find out (1) the effect of motives on perceiver's image perception on ramie fabrics, and perceiver's trait, age and gender on sensory image evaluation of ramie fabrics. The research was a quasi experiment and experimental materials developed for the study were a set of material stimuli and semantic differential scales to measure sensory image of the stimuli, an aesthetic value scale. the independent design was motif design techniques(Plain Weave, burnt-out, embroidery, stripe, check). The subjects were 421 adults in Daejeon and Seachun. The results was as follows: The factor analysis of semantic differential scales for the ramie materials emerged 4 different image dimensions: attractiveness, hand, elegance, weight). The five design techniques showed significantly different image affects on some selective dimensions. The burn-out design gave the most attractive image, the embroidery design gave the softest image and plain weaved fabric presented the lightest hand image. Consumer's aesthetic values, gender and age tended to affect sensory image evaluation of ramie materials. On conclusion the result revealed that design strategy for the ramie material, design development though motives will be an essential process. and for material design pursued design image and target consumer's trait should be carefully considered.

  • PDF

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF