• 제목/요약/키워드: Design weight value

검색결과 500건 처리시간 0.025초

Service Oriented Cloud Computing Trusted Evaluation Model

  • Jiao, Hongqiang;Wang, Xinxin;Ding, Wanning
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1281-1292
    • /
    • 2020
  • More and more cloud computing services are being applied in various fields; however, it is difficult for users and cloud computing service platforms to establish trust among each other. The trust value cannot be measured accurately or effectively. To solve this problem, we design a service-oriented cloud trust assessment model using a cloud model. We also design a subjective preference weight allocation (SPWA) algorithm. A flexible weight model is advanced by combining SPWA with the entropy method. Aiming at the fuzziness and subjectivity of trust, the cloud model is used to measure the trust value of various cloud computing services. The SPWA algorithm is used to integrate each evaluation result to obtain the trust evaluation value of the entire cloud service provider.

개선된 미세분할 방법과 가변적인 가중치를 사용한 벡터 부호책 설계 방법 (The design method for a vector codebook using a variable weight and employing an improved splitting method)

  • 조제황
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.462-469
    • /
    • 2002
  • 벡터 부호책 설계에 사용되는 기존 K-means 알고리즘은 모든 학습반복에서 고정된 가중치를 적용하는데 반해 제안된 방법은 학습반복마다 가변되는 가중치를 적용한다. 초기 학습반복에서는 새로운 부호벡터를 얻기 위해 수렴영역을 벗어나는 2 이상의 가중치를 사용하고, 이 값이 클수록 가변 가중치를 적용하는 학습반복을 줄임으로써 우수한 부호책을 설계할 수 있다. 초기 부호책 설계에 사용되는 미세분할 방법을 개선하기 위하여 소속 학습벡터와 대표벡터간의 오차를 줄이는 방법을 사용한다. 즉 자승오차가 최대인 대표벡터를 제외시키고 최소인 대표벡터를 미세분할함으로써 초기 부호벡터로 대체될 보다 적절한 대표벡터를 얻을 수 있다.

철도객차용 크로스 빔의 경량화 설계에 관한 연구 (A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach)

  • 장득열;전형용
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

경량화된 대차프레임의 동적특성에 관한 연구 (A Study on Dynamic Characteristics of a Weight-Reduced Bogie Frame)

  • 최경호;박정호;안찬우;김현수;조우석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.823-826
    • /
    • 2001
  • A shape optimization of a rib of a bolster of a bogie frame is attempted and a dimension optimization on upper and lower plates is also carried out for the reduction of the weight of bogie frame. In addition, the dynamic characteristics of the weight reduced model are investigated by an analysis of a natural frequency and a transient analysis. The results show that the first natural frequency of an optimized model is larger than that of the lowest design value. And the results of transit analysis based on the experimental stress also show smaller value than the yield stress. Thus the optimized model attempted in this study is considered to be structurally stable and useful for the improvement of railway carriages.

  • PDF

인력비행기 개발을 위한 설계 및 제작 고려 요소 (The Design and Construction Consideration for Developing the Human Powered Aircraft)

  • 이기영;최성옥
    • 한국항공운항학회지
    • /
    • 제17권1호
    • /
    • pp.29-38
    • /
    • 2009
  • This paper surveys the historical perspective and design considerations for developing the human powered aircraft(HPA). Especially the weight and materials, aerodynamics, flight controls, and power trains are focused. The average power a human can produce and sustain is approximately 200${\sim}$250 W which is a critical design constraint of HPA. The survey shows that the empty weight of HPA was in the 30${\sim}$40 kg range(90${\sim}$110 kg include pilot). Thus, in order to design a successful HPA, the value of power to weight ratio should be 2.0 W/kg or above. The HPA design technique could be applied directly to the development of an unmanned high altitude airplanes used for atmospheric research, where light structures, low Reynolds number aerodynamics and high efficiency propeller design are required as well.

  • PDF

볼밸브용 볼의 로봇 육성용접시스템에서 포지셔너의 설계 및 구조강도해석에 관한 연구 (A study on design and structural strength analysis of positioner in robot overlay welding system of ball for ball-valve)

  • 이종환;노태정
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1639-1644
    • /
    • 2015
  • 볼밸브용 볼의 로봇 육성용접시스템에서 포지셔너의 설계 및 구조강도 해석에 관한 연구를 하였다. 포지셔너의 일부분인 터닝 유닛을 모델링하였고, 보로 가정하여 해석을 진행하였다. 볼의 무게가 $9,000kg_f$ 일 때 터닝 유닛에 가해지는 응력이 366.85MPa로 나왔다. 이 값은 재료의 항복강도보다 높은 값이다. 앞의 결과를 토대로 터닝 유닛을 수정하여 모델링을 하였다. 수정된 모델링으로 해석한 결과, 응력의 값은 296.11MPa로 확인되었다. 이 값은 재료의 항복강도보다 낮은 수치이며, 볼의 무게를 버티는 것을 알 수 있었다.

반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계 (Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation)

  • 방제성;한정우;이종민
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

VE 대상선정을 위한 평가항목의 가중치결정방법에 관한 연구 (A Study on the Subject Selection of VE Using Decision Weights Techniques)

  • 윤동진;신병윤;정용식;이상범
    • 한국건축시공학회지
    • /
    • 제5권3호
    • /
    • pp.83-90
    • /
    • 2005
  • Was used at step space-time mainly after VE technique sponsors in domestic in the 1960s but have been expanded to design step recently. Possibility of value elevation or cost reduction must choose member that is effectively for active and effective application of VE technique. In this study, when enforce design VE examining for weight decision corrosion protection been using in weight grant composition estimation technique, target choice process wishes to suggest formality and method that can be achieved effectively Main conclusion of this study sorts valuation items step by step for weight appropriation of valuation basis and give point on article of high position point after expert which employer is included estimates article by low rank step and this presented high position method that do union item by item and establishes by item weight. Did these techniques for giving weights so that importance for weight appropriation developed estimation program, and data save of target estimation standard and target estimation standard is possible using straight sit.

가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계 (Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function)

  • 최영휴;차상민;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Optimum design of parabolic steel box arches

  • Azad, Abul K.;Mohdaly, Hani M.M.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.169-180
    • /
    • 2000
  • An optimization procedure has been prescribed for the minimum weight design of symmetrical parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch which includes the optimum depth profile and the optimum lengths and areas of the required flange plates corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the entire span. For any other loading, the optimum value of h/L is less than 0.41.