• Title/Summary/Keyword: Design weight value

Search Result 500, Processing Time 0.034 seconds

Service Oriented Cloud Computing Trusted Evaluation Model

  • Jiao, Hongqiang;Wang, Xinxin;Ding, Wanning
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1281-1292
    • /
    • 2020
  • More and more cloud computing services are being applied in various fields; however, it is difficult for users and cloud computing service platforms to establish trust among each other. The trust value cannot be measured accurately or effectively. To solve this problem, we design a service-oriented cloud trust assessment model using a cloud model. We also design a subjective preference weight allocation (SPWA) algorithm. A flexible weight model is advanced by combining SPWA with the entropy method. Aiming at the fuzziness and subjectivity of trust, the cloud model is used to measure the trust value of various cloud computing services. The SPWA algorithm is used to integrate each evaluation result to obtain the trust evaluation value of the entire cloud service provider.

The design method for a vector codebook using a variable weight and employing an improved splitting method (개선된 미세분할 방법과 가변적인 가중치를 사용한 벡터 부호책 설계 방법)

  • Cho, Che-Hwang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.462-469
    • /
    • 2002
  • While the conventional K-means algorithms use a fixed weight to design a vector codebook for all learning iterations, the proposed method employs a variable weight for learning iterations. The weight value of two or more beyond a convergent region is applied to obtain new codevectors at the initial learning iteration. The number of learning iteration applying a variable weight must be decreased for higher weight value at the initial learning iteration to design a better codebook. To enhance the splitting method that is used to generate an initial codebook, we propose a new method, which reduces the error between a representative vector and the member of training vectors. The method is that the representative vector with maximum squared error is rejected, but the vector with minimum error is splitting, and then we can obtain the better initial codevectors.

A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach (철도객차용 크로스 빔의 경량화 설계에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

A Study on Dynamic Characteristics of a Weight-Reduced Bogie Frame (경량화된 대차프레임의 동적특성에 관한 연구)

  • 최경호;박정호;안찬우;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.823-826
    • /
    • 2001
  • A shape optimization of a rib of a bolster of a bogie frame is attempted and a dimension optimization on upper and lower plates is also carried out for the reduction of the weight of bogie frame. In addition, the dynamic characteristics of the weight reduced model are investigated by an analysis of a natural frequency and a transient analysis. The results show that the first natural frequency of an optimized model is larger than that of the lowest design value. And the results of transit analysis based on the experimental stress also show smaller value than the yield stress. Thus the optimized model attempted in this study is considered to be structurally stable and useful for the improvement of railway carriages.

  • PDF

The Design and Construction Consideration for Developing the Human Powered Aircraft (인력비행기 개발을 위한 설계 및 제작 고려 요소)

  • Lee, Ki-Young;Choi, Seong-Ok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • This paper surveys the historical perspective and design considerations for developing the human powered aircraft(HPA). Especially the weight and materials, aerodynamics, flight controls, and power trains are focused. The average power a human can produce and sustain is approximately 200${\sim}$250 W which is a critical design constraint of HPA. The survey shows that the empty weight of HPA was in the 30${\sim}$40 kg range(90${\sim}$110 kg include pilot). Thus, in order to design a successful HPA, the value of power to weight ratio should be 2.0 W/kg or above. The HPA design technique could be applied directly to the development of an unmanned high altitude airplanes used for atmospheric research, where light structures, low Reynolds number aerodynamics and high efficiency propeller design are required as well.

  • PDF

A study on design and structural strength analysis of positioner in robot overlay welding system of ball for ball-valve (볼밸브용 볼의 로봇 육성용접시스템에서 포지셔너의 설계 및 구조강도해석에 관한 연구)

  • Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1639-1644
    • /
    • 2015
  • A study on design and structural strength analysis of a positioner in robot overlay welding system of a ball for ball-valves. Turning-unit of positioner modeled, analysis was conducted by assuming the beam. Turning-unit is applied to the stress, it was shown by 366.85MPa when weight of the ball is $9,000kg_f$. This value is higher than the yield strength of the material. Based on the results of previous, it was modeled the turning-unit by modifying. Results of analysis by a modified modeling, The value of stress was confirmed to 296.11MPa. This value is a value lower than the yield strength of the material, it was found to support the weight of the ball.

Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation (반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계)

  • Bang, Je-Sung;Han, Jeong-Woo;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

A Study on the Subject Selection of VE Using Decision Weights Techniques (VE 대상선정을 위한 평가항목의 가중치결정방법에 관한 연구)

  • Yun, Dong-Jin;Sin, Byung-Yoon;Jeong, Yong-Sik;Lee, Sang-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.83-90
    • /
    • 2005
  • Was used at step space-time mainly after VE technique sponsors in domestic in the 1960s but have been expanded to design step recently. Possibility of value elevation or cost reduction must choose member that is effectively for active and effective application of VE technique. In this study, when enforce design VE examining for weight decision corrosion protection been using in weight grant composition estimation technique, target choice process wishes to suggest formality and method that can be achieved effectively Main conclusion of this study sorts valuation items step by step for weight appropriation of valuation basis and give point on article of high position point after expert which employer is included estimates article by low rank step and this presented high position method that do union item by item and establishes by item weight. Did these techniques for giving weights so that importance for weight appropriation developed estimation program, and data save of target estimation standard and target estimation standard is possible using straight sit.

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Optimum design of parabolic steel box arches

  • Azad, Abul K.;Mohdaly, Hani M.M.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.169-180
    • /
    • 2000
  • An optimization procedure has been prescribed for the minimum weight design of symmetrical parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch which includes the optimum depth profile and the optimum lengths and areas of the required flange plates corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the entire span. For any other loading, the optimum value of h/L is less than 0.41.