• Title/Summary/Keyword: Design water level

Search Result 860, Processing Time 0.029 seconds

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

A Landscape Design of Mixed Use Development Project by Project Financing in Baebang, Asan (아산배방 복합단지개발 PF사업 조경설계)

  • Roh Hwan-Kee;Choi Jung-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.104-113
    • /
    • 2005
  • This landscape design proposal was presented for a competition for mixed-use development project by project financing in Asan Baebang which was held by the Korea National Housing Corporation in July of 2005. The site is a center of Asan Baebang New Town Development District and has a commercial area of $57,929m^{2}$. Design guidelines and judging criteria of this competition were to build a symbolic center and cultural core for district, to elevate positive image and identity of Asan New Town by attractive place making, to link with separated block in the site and regional context, and to make environmentally sustainable design by creating an attractive waterfront of Jang Jae stream passing through the site. This is the most important condition for the design. Therefore, the authors developed design concept and strategy within the guidelines and this conditions. The schema of the design was introduced by the water in the site. To evolve design concept, we reinterpreted water and context in the site combining with landscape design strategy. So the proposal set the main design concept as 'all that is solid melt into water' as if Marshall Berman said. By doing that, design concept of the proposal evolved as follows: 'extension' of water and greer, 'a joint' of space,'newness' of experience, 'breath' of consensus with each other. The spatial concept of this project was developed by expressing five theme spaces; eco zone, entertainment zone, art zone, culture zone, leisure zone. These theme spaces were consecutively placed along the pedestrian path and to consists of vertical layer in each level and diverse design technique and spatial effects are used.

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Study of Power Output Characteristics of Wave Energy Conversion System According to Turbine Installation Method Combined with Breakwater (방파제 부착형 파력발전시스템의 터빈설치 방법에 따른 출력특성에 관한 연구)

  • Lee, HunSeok;Oh, Jin-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.317-321
    • /
    • 2015
  • Many kinds of generation systems have been developed to use ocean energy. Among these, with the use of an oscillating water column (OWC) for power generation is attracting attention. The OWC-type wave power generation system converts wave energy into electricity by operating a generator turbine with the oscillating water level in a column of water. There are two ways to convert wave power into electricity using an OWC. One uses a cross-flow turbine using the water level inside the OWC. The other method uses the flow of air in a Wells turbine, which depends on the water level. An experiment was carried out using a 2-D wave tank in order to minimize the number of empirical tests. The design factors were taken from Koo et al. (2012) and the experimental environment assumed by free surface motion. This paper deals with characteristics of two types of wave energy conversion systems combine with a breakwater. One model uses an air-driven Wells turbine and a cross-flow water turbine. The other type uses a cross-flow water turbine. Wave energy converters with OWCs have mostly been studied using air-driven Wells turbines. The efficiency of the cross-flow turbine was about 15% higher than that of the other model, and the water level of the OWC internal chamber for the cross-flow water turbine and air-driven Wells turbine was less than about 40% lower than the one using only the cross-flow water turbine.

Experimental Study on Flow Characteristic and Wave Type Flow at Downstream of Stepped Weir (계단형 보 하류 흐름특성과 Wave Type Flow에 관한 실험연구)

  • Kang, Joon-Gu;Yeo, Hong-Koo;Lee, Keum-Chan;Choi, Nam-Jeong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Stepped weir of this study was suggested a type of natural type structures. Unique flow, such as Wave type flow, at downstream of mild slope stepped occurs. WTF(Wave type flow) is different with hydraulic jump occurred at Round crest weir. WTF is phenomenon to rise the water level by recirculation area occurred by step height at downstream of mild slope stepped. Wave height of WTF condition is higher than tailwater level and maximum velocity of WTF condition occurs in area of water surface. In this results, WTF presents to be important factor for design of join area of weir with levee. This study got and analyzed hydraulic condition occurred of WTF, scales of WTF and velocity profiles on flow patterns using experiments. WTF was not consider to stepped weir design and this results can be important data for design of stepped weir and structures.

Siniulating Daily Inflow and Release Rates for Irrigation Reservoirs(III) - Model Application to Dafly Reservoir Operations - (관개용 저수지의 일별 유입량과 방류량의 모의 발생 (III) -저수지 모의조작 모형의 응용-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-105
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. And the objective or this study is to develop a Daily Irrigation Reservoir Operation Model(DIROM) combining the inflow and the release models which depicts the daily water level fluctuations of an irrigation reservoir, and to evaluate the applicability of the model. DIROM was applied to four reservoirs and daily water levels were simulated and compared to the observed data. The model behaviour was also compared with that of a ten - day based model, Reservoir Operation Study(ROS) which has been applied for determining the design capacity of reservoirs. Various combinations of measured and simulated inflow and release rates for tested reservoirs were used to define the daily water level fluctuations. Simulated release rates and measured inflow data resulted in larger errors, and simulated inflow and release rates produced the smallest errors in water level comparison. Two resevoir operation models, DIROM and ROS were applied to the same reservoir and the simulation results compared. The computational errors of DIROM ware smaller than those of ROS, and DIROM was more sensitive to meteorological conditions. DIROM demonstrated its potenial applicability in water management and operation.

  • PDF

Application of Linear and Nonlinear Analysis Technique on the Complex Water Distributing System (복합배수관망에 있어서 선형 및 비선형 해석기법의 적용)

  • 고수현;최윤영;안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.69-78
    • /
    • 2001
  • In this study optimal analysis of pipe network was performed using linear and non linear analysis method for complex real pipe network system of Mungyeong water purification field system which consists of 70 nodes and 86 elements. From the examination result of total flow which is distributed to each pipe, it is found that KYPIPE2 Model supplies less amount than NLAM. It is known that dynamic water level and pressure head of KYPIPE2 Model and NLAM are nearly in accordance with each other from each method of the pipe network analyses, and appeared that both methods of analysis shows high reliable result since the distribution of dynamic water level for every node is the short range of EL. 205.0m~EL. 210.0m besides the pressed dynamic water level. The analysis results of pressure in the methods of pipe network analysis for KYPIPE2 Model and NLAM are similar and it is satisfactory result that the pressure distributions of the tab water design criterion of 5.0kgf/cm$^2$ besides the small part of highland.

  • PDF

Water Rockets for Engineering Education of Launch Vehicles, Part I: Principles and System Composition (발사체 공학교육을 위한 물로켓, Part I: 원리와 시스템 구성)

  • Kim, Jae-Yeul;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.525-534
    • /
    • 2019
  • Water rocket is a pressurized liquid propellant rocket that shares the same basic principles of space launch vehicles. Water rockets can be used as an engineering educational material for the liquid rocket principles and the launch vehicle systems, far beyond the scope of K-12 level science education. In this paper, the principles and theories of water rocket propulsion and flight dynamics was investigated at the level of undergraduate rocket engineering classes. Also, the system level design and operation of water rocket is summarized by including the components of launch vehicle, launch pad, payload and recovery as well as altitude measurement methods.

A Fault Detection System Design for Nuclear Steam Generator Level Control System (원전 증기발생기 수위제어계통의 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2006
  • This paper deals with a fault detection system design for nuclear steam generator water level control system. We expressed the nonlinear properties of the steam generator level system as a T-S fuzzy system with time varying uncertain parameters. We design a residual generator using a left coprime factorization of the T-S fuzzy model and a fault detection filter in order to improve the fault detection performance. We demonstrate the efficiency of the suggested design method via many computer simulations.

Estimation of Design Floods Using 3 and 4 Parameter Kappa Distributions (3변수 및 4변수 Kappa 분포에 의한 설계홍수량 추정)

  • Maeng, Seung-Jin;Kim, Byeoung-Jun;Kim, Hyung-San
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • This paper is to induce design floods through L-moment with 3 and 4 parameter Kappa distributions including test of independence by Wald-Wolfowitz, homogeneity by Mann-Whitney and outlier by Grubbs-Beck on annual maximum flood flows at 9 water level gaging stations in Han, Nakdong and Geum Rivers of South Korea. After analyzing appropriateness of the data of annual maximum flood flows by Kolmogorov-Smirnov test, 3 and 4 Kappa distributions were applied and the appropriateness was judged. The parameters of 3 and 4 Kappa distributions were estimated by L-moment method and the design floods by water level gaging station was calculated. Through the comparative analysis using the relative root mean square errors (RRMSE) and relative absolute errors (RAE) calculated by 3 and 4 parameter Kappa distributions with 4 plotting position formulas, the result showed that the design floods by 4 parameter Kappa distribution with Weibull and Cunnane plotting position formulas are closer to the observed data than those obtained by 3 parameter Kappa distribution with 4 plotting position formulas and 4 parameter Kappa distribution with Hazen and Gringorten plotting position formulas.