• Title/Summary/Keyword: Design validation

Search Result 1,287, Processing Time 0.026 seconds

Evelopment of a Practical Mechanistic-Empirical design Procedure for Flexible Pavements (역학적이론과 경험에 근거한 실용적 연성포장 설계법 개발)

  • Park, Dong-Yeob;Kim, Hyung-Bae;Buch, Neeraj;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.1-13
    • /
    • 2002
  • Design methods for new flexible pavements and overlays are in the transition from empirical to mechanistic approach, and many state highway agencies trend to move toward the adoption and use of mechanistic-empirical (M-E) design in new constructions and rehabilitations of flexible pavements. Hence, the Michigan Department of Transportation (MDOT) decided to develop a M-E flexible pavement design procedure, in which major pavement distresses such as fatigue cracking and rutting are employed as indicators of the serviceability of a flexible pavement. The main concept of the developed design procedure is that a designed pavement that is supposed to carry a certain number of traffic must satisfy designated thresholds of rut depths and fatigue lives during a service period. For the M-E design procedure, transfer functions were developed to predict rut-depths and fatigue lives. These functions related the pavement responses to pavement performance. For validation, three current new flexible pavement design cases were obtained from the MDOT. In these cases, asphalt concrete (AC) layer thicknesses determined by the suggested M-E procedure compare favorably with those determined by the current MDOT design practice that is based on AASHTO design guide. This finding implies that the suggested Michigan M-E flexible pavement design procedure can provide a good opportunity to improve the current design practice.

  • PDF

Optimal Parameter Design for a Cryogenic Submerged Arc Welding(SAW) Process by Utilizing Stepwise Experimental Design and Multi-dimensional Design Space Analysis (단계적 실험 설계와 다차원 디자인 스페이스 분석 기술을 통한 초저온 SAW 공정의 최적 용접 파라미터 설계)

  • Lee, Hyun Jeong;Kim, Young Cheon;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.51-68
    • /
    • 2020
  • Purpose: The primary objective of this research is to develop the optimal operating conditions as well as their associated design spaces for a Cryogenic Submerged Arc Welding(SAW) process by improving its quality and productivity simultaneously. Methods: In order to investigate functional relationships among quality characteristics and their associated control factors of an SAW process, a stepwise design of experiment(DoE) method is proposed in this paper. Based on the DoE results, not only a multi-dimensional design space but also a safe operating space and normal acceptable range(NAR) by integrating statistical confidence intervals were demonstrated. In addition, the optimal operating conditions within the proposed NAR can be obtained by a robust optimal design method. Results: This study provides a customized stepwise DoE method (i.e., a sequential set of DoE such as a factorial design and a central composite design) for Cryogenic SAW process and its statistical analysis results. DoE results can then provide both the main and interaction effects of input control factors and the functional relationships between the input factors and their associated output responses. Maximizing both the product quality with high impact strength and the productivity with minimum processing times simultaneously in a case study, we proposed a design space which can provide both acceptable productivity and quality levels and NARs of input control factors. In order to confirm the optimal factor settings and the proposed NARs, validation experiments were performed. Conclusion: This research may provide significant contributions and applications to many SAW problems by preparing a standardization of the functional relationship between the input factors and their associated output response. Moreover, the proposed design space based on DoE and NAR methods can simultaneously consider a number of quality characteristics including tradeoff between productivity and quality levels.

Application of Big Data and Machine-learning (ML) Technology to Mitigate Contractor's Design Risks for Engineering, Procurement, and Construction (EPC) Projects

  • Choi, Seong-Jun;Choi, So-Won;Park, Min-Ji;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.823-830
    • /
    • 2022
  • The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.

  • PDF

Optimal Structural Design of a Flextensional Transducer Considering the Working Environment (적용환경을 고려한 Flextensional 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1063-1070
    • /
    • 2008
  • The performance of an acoustic transducer is determined by the effects of many design variables, and mostly the influences of these design variables are not linearly independent of each other. To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study, the variation of the performances of underwater acoustic transducer in relation to its structural variables was analyzed. In addition, the new optimal design scheme of an acoustic transducer that could reflect not only individual but also all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity was developed. The validation of the new optimal design scheme was verified by applying the optimal structure design of a flextensional transducer which are the most common use for high power underwater acoustic transducer. With the finite element analysis(FEA), we analyzed the variation of the resonance frequency, sound pressure, and working depth of a flextensional transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, sound pressure, and working depth in terms of the design variables. By applying the constrained optimization technique, Sequential Quadratic Programming Method of Phenichny and Danilin(SQP-PD), to the derived function, we designed and verified the optimal structure of the Class IV flextensional transducer that could provide the highest sound pressure level and highest working depth at a given operation frequency of 1 kHz.

Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank (지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석)

  • Yun, Jang Hyeok;Kang, Tae Won;Yang, Hyunik;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

Determination of Design Channel Width for from Medium Rivers in Geum-River Basin (금강 유역내 중규모 하천의 계획하폭 산정)

  • Myeng, Bong-Jae;Lee, Jong-Seok;Cha, Young-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.47-56
    • /
    • 2007
  • The parameters are determined analyzing the hydraulic and hydrological characteristics of design floods, watershed, channel length, and river bed slope. The models are calibrated while the input hydrologic data are the field data of middle size areas in Guem river basin in Korea. The basic equations of design width are suggested by the multiple regression analysis and the results show excelled in comparisons as well as calibrations with the existing empirical formulas and the design criteria, respectively. The basic equations of design width in validation process is determined the regression functions with the design floods, watershed, channel length, river bed slope as the four parameters using other database in the same scales watershed. As a results, this study will be used for apply to determine of design width and river alignmentof the watershed in hydraulic fields.

APPLICATION OF FIRE RESEARCH TO BUILDING FIRE SAFETY DESIGN - CURRENT BENEFITS AND FUTURE NEEDS

  • Bressington, Peter;Johnson, Peter
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.392-403
    • /
    • 1997
  • There is a strong international move towards performance based fire regulations for buildings with New Zealand and Australia at the forefront of research in this fold. The reform of regulations is thought to offer more innovation and flexibility in building design and greater cost effectiveness in construction. An important part of the research in this area is related to the development of agreed approaches to fire safety design, such as the Fire Code Reform Centre's "Fire Engineering Guidelines" or New Zealand's "Fire Engineering Design Guide". Such design process documents have incorporated or referenced much of the latest research in areas such as: tenability criteria fire compartment models egress models risk assessment. Use of such design guidelines or equivalents in major projects in countries such as Hong Kong and Australia have highlighted where fro engineering can offer real benefits to building designers and ultimately building owners and operators. However, there is still much research to be done and use of a systematic, logical design approach clearly identifies where design data or modelling techniques are still urgently required. Such areas are: fire growth rates and peak heat release rates for non-residential occupancies pre-movement times related to egress experimental validation and limits of applicability of CFD and other compartment Ire models probability/reliability data on fire protection systems for risk based analysis. Examples from case studies will be shown where lack of such research and poor judgement can lead to inferior design solutions or where unnecessarily conservative designs can lead to cost excesses. In summary, the link between Ire engineering designers and the research community is very important to highlight areas of fire research that will have the most benefit to the building and construction industry.nstruction industry.

  • PDF

Development of Design Principles for Astronomical Observing Education Program Based on Authentic Inquiry (참탐구를 위한 천체 관측 교육 프로그램 설계 원리 개발)

  • Choi, Dong-Yeol;Ahn, Yumin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.752-769
    • /
    • 2021
  • Although astronomical observation has various educational effects and values, studies conducted in the context of earth science education have been relatively insufficient compared with other fields. In addition, few studies have been conducted on systematic design principles development guiding teachers in the application of practical astronomical observation education. In this study, we attempted to develop design principles for astronomical observation education programs for K-12 students and applied the program to the classes. The initial design principles were derived through literature research and revised through validation processes by eight experts. The final principles were confirmed based on the usability evaluation of two high school teachers, and they included 11 design principles and 27 detailed guidelines. In addition, an astronomical observation education program consisting of eight lessons was designed by applying the final design principle. This program was applied to after-school classes in high school, the responses of participating students were investigated. We anticipate our design principles can be used as a criterion for systematic design of various types of observation activities, including outdoor observations.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.

Empirical Validation of Interior Image Preference Scale(IIPS) (실내이미지 선호 측정 시각적 도구에 대한 실증적 검증)

  • 이연숙;홍미혜
    • Korean Institute of Interior Design Journal
    • /
    • no.16
    • /
    • pp.3-9
    • /
    • 1998
  • The purpose of this research is to empirically validate the IIPS (Interior Image Preference Scale) which is a newly developed visual instrument for evaluating the environmental disposition inherent to individuals especially one's interior image preferences. The questionnaire survey was used. The data were collected from Oct. 10th 1997 to Nov. 14th 1997. The subjects were 399 undergraduate students and 30 professor of Dep. of Interior Design. With respect to content validity and construct validity of IIPS discrimination and similarity structure of scales and characteristics of 12 prototype interior images were examined in comparison with the originals. 429 questionnaires were analyzed using frequency percentage mean and Multi-Dimensional Scales. The major results were as follows (1) All 80 items of IIPS were discriminated by 3 criteria such as Traditionalism·Modernity(TM) Masculinity·Femininty (MF) and Simplicity·Complexity (SC) as expected at the time of the instrument development stage.(2) 12 prototype interior images of the IIPS showed tendency to be accord with descriptors to express them in comparison with the originals (3) All 90 items of IIPS showed a cluster distribution according to the similarity structure of scales. Three subscales of IIPS(e . g. TM MF and SC) were structured pretty well by those 3 dimensions. This research revealed the IIPS to have content validity and construct validity for evaluating of preference of three properties of interior image in empirical research. The IIPS was found to be potential objective tool to measure the interior image preferences.

  • PDF