• 제목/요약/키워드: Design tensile strength

검색결과 994건 처리시간 0.027초

탄소섬유쉬트의 재료 역학적 특성에 관한 연구 (Study on the mechanical Properties of Carbon Fiber Sheet)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.803-808
    • /
    • 1998
  • As carbon fiber is a light-weight materials, high tensile strength and durability compared with rebar, the retrofitting method for RC structures using carbon fiber sheet (CFS) must be use widely. In this paper, the tensile strength test for carbon fiber sheet variable of CF's weight and elastic modulus to evaluate the design tensile strength of carbon fiber sheet which is needed for the strengthening design of CFS and the calculation of strengthening effect. As a result, the design tensile strength of CFS can be calculate using the effect coefficient of strengthening(α) of CFS, the average tensile strength of CFS and the standard deviation of CFS(equation 5)

  • PDF

마찰 교반 용접된 철도 차량용 A6005 압출재의 기계적 성능 향상을 위한 최적 공법 설계 (Optimum Design of the Friction Stir Welding Process on A6005 Extruded Alloy for Railway Vehicles to Improve Mechanical Properties)

  • 원시태;김원경
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.81-87
    • /
    • 2009
  • Recently, extruded aluminium-alloy panels have been used in the car bodies for the purpose of the light-weight of railway vehicles and FSW(Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. This paper presents the optimum design of the FSW process on A6005 extruded alloy for railway vehicles to improve its mechanical properties. Rotational speed, welding speed and tilting angle of the tool tip were chosen as design parameters. Three objective functions were determined; maximizing the tensile strength, minimizing the hardness and maximizing the difference between the normalized tensile strength and hardness. The tensile tests and the hardness tests for fifteen FSW experiments were carried out according to the central composite design table. Recursive model functions on three characteristic values, such as the tensile strength, the hardness difference(${\Delta}Hv$) and the difference of normalized tensile strength and ${\Delta}Hv$, were estimated according to the classical response surface analysis methodology. The reliability of each recursive function was verified by F-test using the analysis of variance table. Sensitivity analysis on each characteristic value was done. Finally, the optimum values of three design parameters were found using Sequential Quadratic Programming algorithm.

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

Modified Design Formula for Predicting the Ultimate Strength of High-tensile Steel Thin Plates

  • Park, Joo Shin;Seo, Jung Kwan
    • 해양환경안전학회지
    • /
    • 제27권3호
    • /
    • pp.447-456
    • /
    • 2021
  • Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.

강섬유 보강 초고성능 콘크리트의 탄성계수 및 인장강도 평가 (An Evaluation of Elasticity Modulus and Tensile Strength of Ultra High Performance Concrete)

  • 류금성;유성원
    • 한국건설순환자원학회논문집
    • /
    • 제3권3호
    • /
    • pp.206-211
    • /
    • 2015
  • 최근에 활발히 연구되어지고 있는 UHPC의 경우, 강섬유 혼입량에 의해서 인장강도가 절대적으로 영향을 받는 이유로 본 논문에서는 압축강도, 강섬유량 등을 변수로 하여 압축강도, 탄성계수 및 인장강도 등을 실험적으로 구한 후, 그 결과를 분석하였다. 실험결과에 의하면, 압축강도와 탄성계수 및 인장강도는 비례관계로 상당한 상관성을 가지는 것으로 나타났으며, 섬유혼입률에 따른 압축강도와 인장강도의 관계 역시는 비례관계의 상관성을 가지는 것으로 나타났다. 탄성계수의 경우, 실험결과와 현행 국내 설계기준 식의 차이는 그다지 크지 않은 것으로 나타나, 기존의 설계기준 식을 준용하여도 UHPC 탄성계수 평가에는 큰 문제가 없을 것으로 예상된다. 한편 인장강도의 경우, 현행 설계기준에서 제시되지 않은 이유로 비선형 회귀분석을 실시하여 섬유혼입률을 고려한 인장강도 식을 제안하였으며, 제안된 식은 좋은 상관성을 보이는 것으로 나타났다.

강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가 (Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete

  • Shariq, M.;Prasad, J.
    • Computers and Concrete
    • /
    • 제23권2호
    • /
    • pp.133-143
    • /
    • 2019
  • The paper presents the experimental investigations into the effect of ground granulated blast furnace slag (GGBFS) on the time-dependent tensile strength of concrete. The splitting and flexural tensile strength of concrete was determined at the ages of 3, 7, 28, 56, 90, 150 and 180 days using the cylindrical and prism specimens respectively for plain and GGBFS concrete. The amount of cement replacement by GGBFS was 0%, 40% and 60% on the weight basis. The maximum curing age was kept as 28 days. The results showed that the splitting and flexural tensile strength of concrete containing GGBFS has been found lower than the plain concrete at all ages and for all mixes. The tensile strength of 40 percent replacement has been found higher than the 60 percent at all ages and for all mixes. The rate of gain of splitting and flexural tensile strength of 40 percent GGBFS concrete is found higher than the plain concrete and 60 percent GGBFS concrete at the ages varying from 28 to 180 days. The experimental results of time-dependent tensile strength of concrete are compared with the available models. New models for the prediction of time-dependent splitting and flexural tensile strength of concrete containing GGBFS are proposed. The present experimental and analytical study will be helpful for the designers to know the time-dependent tensile properties of GGBFS concrete to meet the design requirements of liquid retaining reinforced and pre-stressed concrete structures.

연성 지오그리드의 내구성 및 장기설계인장강도 평가 (Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids)

  • 조삼덕;김진만;안주환;전한용;조성호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF

머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석 (Analysis of friction stir welding characteristics of aluminum alloy using machining center)

  • 승영춘;박경도;이춘규
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.