• Title/Summary/Keyword: Design load

Search Result 9,382, Processing Time 0.034 seconds

The Coefficients of Variation Characteristic of Stress Distribution in Silty Sand by Probabilistic Load (확률론적 하중에 따른 실트질 모래지반 내 지중응력의 변동계수 특성)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.77-87
    • /
    • 2012
  • Recently, Load and Resistance Factor Design (LRFD) based on reliability analysis has become a global trend for economical and rational design. In order to implement the LRFD, quantification of uncertainty for load and resistance should be done. The reliability of result relies on input variable, and therefore, it is important to obtain exact uncertainty properties of load and resistance. Since soil stress is the main reason causing the settlement or deformation of ground and load on the underground structure, it is essential to clarify the uncertainty of soil stress distribution for accurately predict the uncertainty of load in LRFD. In this study, laboratory model test on silty sand bed under probabilistic load is performed to observe propagation of upper load uncertainty. The results show that the coefficient of variation (COV) of soil stress are varied depending on location due to non-linear relationship between upper load increment and soil pressure increment. In addition, when the load uncertainty is transmitted through ground, COV is decreased by damping effect.

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

Maximum axial load level and minimum confinement for limited ductility design of high-strength concrete columns

  • Lam, J.Y.K.;Ho, J.C.M.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.357-376
    • /
    • 2009
  • In the design of concrete columns, it is important to provide some nominal flexural ductility even for structures not subjected to earthquake attack. Currently, the nominal flexural ductility is provided by imposing empirical deemed-to-satisfy rules, which limit the minimum size and maximum spacing of the confining reinforcement. However, these existing empirical rules have the major shortcoming that the actual level of flexural ductility provided is not consistent, being generally lower at higher concrete strength or higher axial load level. Hence, for high-strength concrete columns subjected to high axial loads, these existing rules are unsafe. Herein, the combined effects of concrete strength, axial load level, confining pressure and longitudinal steel ratio on the flexural ductility are evaluated using nonlinear moment-curvature analysis. Based on the numerical results, a new design method that provides a consistent level of nominal flexural ductility by imposing an upper limit to the axial load level or a lower limit to the confining pressure is developed. Lastly, two formulas and one design chart for direct evaluation of the maximum axial load level and minimum confining pressure are produced.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 보정변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress (평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석)

  • Min-Hyeok Jeon;Yeon-Ju Kim;Hyun-Jun Cho;Mi-Yeon Lee;In-Gul Kim;Hansol Lee;Jae Myung Cho;Jong In Bae;Ki-Young Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Reliability Evaluation of Extrapolated Failure Load of Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 외삽 파괴하중 신뢰성 분석)

  • Jung, Sung-Jun;Lee, Sang-Inn;Jeon, Jong-Woo;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.993-1000
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the failure load of the pile is attained. If a reliable failure load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a standard for judging the reliability of the failure load of piles that is obtained from extrapolated load test data. To this aim, eleven static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the failure load was re-determined for each extrapolated data by the ASCE 20-96 method (1997). Statistical analysis was performed on the reliability of the re-evaluated failure loads. The results showed that if the ratio of the maximum-available displacement to the failure-load displacement exceeds 0.6, the extrapolated failure load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed standard of judgment was also verified with static load test data of driven piles.

  • PDF

A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.329-338
    • /
    • 2024
  • Purpose: This study verified the safety of the improved box-type girder behavior by comparing and evaluating the bending behavior results of a full-scale specimen based on the analytical behavior of the splice element PSC U-shaped girder with integrated tensioning systems. Method: Based on the results of the service and strength limit state design using the bridge design standard(limit state design method), the applied load of a 40m full-scale specimen was calculated and a static loading experiment using the four-point loading method was performed. Result: When the design load, crack load, and ultimate load were applied, the specimen deflection occurred at 97.1%, 98.5%, and 79.0% of the analytical deflection value. When the design load, crack load, and ultimate load were applied, the crack gauge was measured at 0.009~0.035mm, 0.014~0.050mm, and 6.383~5.522mm at each connection. Conclusion: The specimen behaved linear-elastically until the crack load was applied, and after cracks occurred, it showed strainhardening up to the ultimate load, and it was confirmed that the resistance of bending behavior was clearly displayed against the applied load. The cracks in the dry joints were less than 25% of grade B based on the evaluation of facility condition standard. The final residual deformation after removing the ultimate load was 0.114mm, confirming the stable behavior of the segment connection.