• Title/Summary/Keyword: Design load

Search Result 9,301, Processing Time 0.039 seconds

Bow Structure Design of the FPSO installed in the North Sea under the Flare Slamming Load (북해설치 FPSO의 플레어 슬래밍 하중에 대응한 선수 설계)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.418-424
    • /
    • 2015
  • This paper is about the bow structure design of the ship-typed and turret moored FPSO which is subjected to the bow-flare slamming load in harsh North Sea environments. Quad 204 FPSO project involves the redevelopment of the existing Schiehallion FPSO which is damaged by impact wave loads. Normally all offshore systems including FPSO are designed to withstand the 100 year storm I.e. the storm that happens once every hundred years at the location where the system is installed. Several incidents have revealed that impact loading is important issue for moored floating production systems. In this paper, the design impact loads are estimated considering the ship owner’s specification, measured data from model tests, requirements of the classification society rules and results of numerical simulation analyses. The impact pressure by numerical analysis is 1.8 times greater than required value by CSR adopted by IACS. Based on the selected design load, plastic design formulae allowing the local material yielding are applied for the initial scantling of the bow structure. To verify the structural integrity, FE analyses are carried out considering the local area subjected to the impact wave loads. Their results such as structural arrangement, design loads and scantlings are shown and discussed. It is found that plastic design formulae in adopting Initial design phase give sufficiently conservative results in terms of structural strength.

The effect of zirconia framework design on the failure of all-ceramic crown under static loading

  • Urapepon, Somchai;Taenguthai, Pakamard
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.146-150
    • /
    • 2015
  • PURPOSE. This in vitro study aimed to compare the failure load and failure characteristics of two different zirconia framework designs of premolar crowns when subjected to static loading. MATERIALS AND METHODS. Two types of zirconia frameworks, conventional 0.5 mm even thickness framework design (EV) and 0.8 mm cutback of full contour crown anatomy design (CB), were made for 10 samples each. The veneer porcelain was added on under polycarbonate shell crown made by vacuum of full contour crown to obtain the same total thickness of the experiment crowns. The crowns were cemented onto the Cobalt-Chromium die. The dies were tilted 45 degrees from the vertical plane to obtain the shear force to the cusp when loading. All crowns were loaded at the lingual incline of the buccal cusp until fracture using a universal testing machine with cross-head speed 0.5 mm/min. The load to fracture values (N) was recorded and statistically analyzed by independent sample t-test. RESULTS. The mean and standard deviations of the failure load were $1,170.1{\pm}90.9$ N for EV design and $1,450.4{\pm}175.7$ N for CB design. A significant difference in the compressive failure load was found (P<.05). For the failure characteristic, the EV design was found only cohesive failures within veneering porcelain, while the CB design found more failures through the zirconia framework (8 from 10 samples). CONCLUSION. There was a significant difference in the failure load between two designs, and the design of the framework influences failure characteristic of zirconia crown.

A Comparative Study on the Evaluation of Bearing Capacity for Driven Pile in Static Load Test (현장정재하시험 결과를 통한 타입말뚝 지지력 판정법 비교 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Choi, Heon-Kil;Yoon, Hwan-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.677-686
    • /
    • 2005
  • The allowable bearing capacity of a pile, the most important factor in stability estimation, is determined by applying safety factor to the ultimate load or yield load. There are several but contradictory methods available in current design codes to estimate the allowable bearing capacity and the safety factor. This paper analyzes load-settlement curves obtained from 19 static load tests measured from 11 sites. At all tests, the load is applied until apparent failure is observed. The validity of the ultimate and yield load estimation method and load caculated from the settlement criterion is investigated through comparison with the measured data. In addition, a new procedure to estimate allowable load and safety factor is proposed. Additional data from field static load tests, such as those incorporated in this study, are needed to more reliably apply the proposed method in design practice.

  • PDF

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

A Study on the Comparisom of Load-carrying Capacity by the rating Methods of Bridges (교량평가법에 의한 내하력 비교에 관한 연구)

  • Han, Sang Chul;Yang, Seung Ie
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.477-492
    • /
    • 2001
  • About half of bridges in United States are considered to be deficient and therefore are in need of repair or replacement. Half of these are functionally obsolete, and others do not have required strength For these bridges repairs and replacements are needed To avoid the high cost of rehabilitation the bridge rating must corectly report the present load-carrying capacity Rating engineers use Allowable Stress Design(ASD) Load Factor Design(LFD), and Load Resistance Factor Design(LRFD) to evaluate the bridge load carrying capacity In this paper the load rating methods are introduced and bridge load test data are collected. The reasons that make the difference between test results and analytical results are explained for each bridge load test And load rating methods are applied to real bridge. The rating factors from each method are compared.

  • PDF

Damage Tolerant Design for the Tilt Rotor UAV (틸트 로터형 무인항공기의 손상허용 설계)

  • Park, Young Chul;Im, Jong Bin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.

Reliability analysis of circular tunnel with consideration of the strength limit state

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.879-888
    • /
    • 2018
  • Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.