• 제목/요약/키워드: Design for test

검색결과 18,012건 처리시간 0.048초

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

The Influence of Cognitive Factors on the Creative Abilities in Design -Focused on the Sensory Modalities and Thinking Modes-

  • Woo Heung-Ryong
    • 디자인학연구
    • /
    • 제19권3호
    • /
    • pp.143-154
    • /
    • 2006
  • The primary purpose of this study was to investigate the influence of Cognitive Factors (CF) on the Creative Abilities (CAs) in design. We set up a model of Cognitive Design Process (CDP), which consists of four domains: Concepts, Experience, Five Senses (FS), and Thinking Modes (TM). Here, experience is first perceived by the five senses, and then recognized by intelligence. We regard design as a transforming process from concept to experience. For this study, two major Sensory Modalities (Visual and Kinesthetic), four Thinking Modes (Brain Dominance Profile), and four Creative Abilities (Fluency, Flexibility, Originality, and Elaboration) were reviewed. We hypothesized that idea generation is influenced by different Sensory Modalities (Visual Sense vs. Kinesthetic Sense) and Thinking Modes, and that these have a close relationship with the attributes of CAs. Firstly, we have examined the cognitive thinking model in design. Then, we adapted the Test of Creative Abilities of Design Thinking (TCADT) for measuring CAs. We surveyed the CAs under CF in particular. Finally, we have investigated the influences of the different Sensory Modalities (Visual Sense vs. Kinesthetic Sense) on CAs. It was found that a close relationship between Brain Dominance and CAs, and Sensory Modalities (SM) have different influence on these creative abilities. As a result, a tool for the Test of CAs and a framework for creative idea generation with the effective CF will be presented. These provide the basis for a new approach to creative idea generation in Experience Design.

  • PDF

해양플랜트 환경모사를 위한 실증시험 시스템 구축에 관한 연구 (Study on the Control System of Verification Test for Offshore Installation Simulation)

  • 주휘동;김태오;강규홍;하연철
    • 스마트미디어저널
    • /
    • 제1권1호
    • /
    • pp.48-52
    • /
    • 2012
  • 해양플랜트에 대한 설계 엔지니어링 기술을 확보하는데 있어 신뢰성 있는 평가 수행이 중요한 위치를 차지하고 있다. 국내 해양플랜트 공정설계 및 기본설계기술의 자립화를 위해서는 신뢰성 평가 기반의 설계검증 기술개발이 필요하고, 이를 위해 신뢰성 있는 실증실험 데이터 확보가 중요한 요소이다. 따라서, 신뢰성 있는 데이터를 확보하기 위해서는 해양플랜트 환경모사 실증시험 시스템이 구축되어야 한다. 본 연구에서는 해양플랜트 공정모듈 환경모사 시스템 구성을 위한 환경제어 및 측정변수 분석과 도출된 변수를 기반으로 데이터 수집장치 및 제어시스템의 설계 계획안을 연구한다.

  • PDF

전동차용 방진고무스프링 특성 및 사용수명 예측 (Characteristics and Useful Life Prediction of Rubber Spring for Railway Vehicle)

  • 우창수;박현성;박동철
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.211-216
    • /
    • 2007
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

우주환경을 고려한 정지궤도위성에 적합한 X대역 필터의 멀티팩터 시험 결과 연구 (The Multipactor Test results on the X Band filter of Space Qualification Model appropriated for the Geostationary Satellite considering for space environments)

  • 박종희;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.65-68
    • /
    • 2017
  • 본 논문은 정지궤도위성 관측탑재체 고속 데이터 전송을 위한 X-대역 이중모드 고전력 채널필터의 우주인증모델에 대한 멀티팩터 시험을 통하여 설계시 요구되는 8 dB 마진과의 비교 검토를 수행하였다. 해석적인 요구되는 마진을 시험을 통해서도 충족하며, 만족한 시험결과를 얻었음을 확인하였다. 멀티팩터의 설계 및 시험은 ECSS의 규격을 준용하여 시험이 실시되었으며, 이를 근간으로 설계시 마진을 충분히 확보되면, 별도의 시험 없이 우주인증 모델용 필터 개발에 있어서 참조하여 사용할 수 있을 것으로 제안한다.

  • PDF

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

비공기압 방식 소형 산업용 바퀴의 설계를 위한 수치해석과 진동실험에 관한 연구 (A study on design of non-pneumatic small industrial wheel using FEM and vibration tests)

  • 홍필기;손창우;서태일
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.48-54
    • /
    • 2018
  • This paper presents a numerical study for the development of a low-noise low-vibration industrial wheel for non-pneumatic wheel to significantly reduce vibration and noise. For this, design, injection molding and performance testing were performed. Various geometric shapes and materials were taken into account. For numerical analysis, ANSYS, LS-Dyna, and ABAQUS were used to predict the behavior of the wheel under different loadings based on various design changes. Based on this, 4 prototypes were fabricated by changing the design of wheels and molds, and various vibration and noise tests were carried out. A vibration tester was developed and tested to perform the vibration noise test considering durability. A prototype and test of the final wheel was performed. In the case of the vibration test, the vibration levels were 81.16dB and 80.66dB, which were below the target 90dB. Noise levels were 53.20 dB and 52.55 dB below the target 65dB. In the case of the impact resistance test, it was confirmed that there was no change in appearance after impact. The product weight was measured to be 174g compared to the target of 190g.

초음속 충동형 터빈의 설계성능 검증방법에 대한 해석 및 시험적 고찰 (Numerical and Experimental Investigation on the Supersonic Impulse Turbine Design Performance Estimation Methodology)

  • 정은환;박편구;이항기;김진선;김대진;김진한
    • 한국추진공학회지
    • /
    • 제13권5호
    • /
    • pp.7-14
    • /
    • 2009
  • 공기를 이용한 초음속 터빈 설계성능 검증방법을 해석적, 시험적으로 고찰하였다. 성능시험기 설계를 위한 터빈상사조건 및 노즐 면적비 관계를 도출하였으며 실형상 노즐을 적용한 터빈과의 성능비교를 전산유동해석 및 성능시험을 통해 수행하였다. 도출된 설계 상사조건을 이용하여 시험용 노즐 블록을 설계할 경우, 설계 성능을 정확히 예측됨을 전산 유동해석을 통해 확인하였으며 시험을 통해 검증하였다. 아울러 초음속 충동형 터빈의 설계성능 측정은 시험용 노즐 뿐 아니라 실형상 노즐을 통해서도 가능하며 이 경우 시험용 노즐의 상사 압력비와 속도비에서 설계 성능이 나타남을 확인할 수 있었다.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • 한국항해항만학회지
    • /
    • 제34권7호
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.