• Title/Summary/Keyword: Design for Assembly

Search Result 1,512, Processing Time 0.029 seconds

Towards a Transportation Support System for Off-site Construction : Identifying Key Functions and Diagramming Functional Blocks (오프사이트건설(Off-site Construction) 운반 시스템을 위한 핵심기능 도출 및 시스템 기능 전개도 개발)

  • Lee, Gangho;Kim, Minguk;Lee, Chansik;Koo, Choongwan;Kim, Taewan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.21-30
    • /
    • 2021
  • The existing construction industry is classified into industries with low productivity compared to other industries. In order to solve the decline in productivity in the construction industry, the world is focusing on off-site construction (OSC), which is about 40% more productive than existing construction methods. This high productivity is possible because the three stages of production, transport to the site, and site assembly are consistently maintained in a continuous flow. This study conducted a functional survey through literature review, preliminary field survey, questionnaire, and expert interview. The surveyed function were classified into five categories: convenience, flexibility, manageability, communication, and safety, and the functional characteristics of flexibility, manageability, and communication were high. Because of the change according to the construction progress, the production schedule of the factory, and the variety of transportation time required. Finally, A functional block diagram was developed based on the 15 functions corresponding with an average score of 4 or more in the surveyed function score result. If the OSC transport system is established through this study, It can contribute to a successful construction OSC project and increase productivity.

Considering Standards on Test Requirements for Units in Liquid-Propellant Propulsion System of Launch Vehicle (발사체 액체추진기관 구성품 시험요건 기준에 대한 고찰)

  • Lim, Ha-Young;Han, Sang-Yeop;Kwon, Oh-Sung;Kim, Byung-Hun;Koh, Hyeon-Seok;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.898-903
    • /
    • 2011
  • Units assembled in the liquid-propellant propulsion system of launch vehicles should guarantee their on- and off-design performances under the various environments as well as at the various operation modes for the launch preparation and flight of launch vehicles. Units of liquid-propellant propulsion system can be installed in launch vehicle to insert satellite(s) into target orbit(s) only under the condition that all units must pass a series of tests to confirm whether those units perform normally as designed under the environment, which may be occurred in such stages of all development and operations as development, qualification, acceptance, assembly, pre-launch preparation, launch, and flight, and whether those units have been developed according to design requirements. Requirements for such tests have been already prepared in the advanced countries in launch vehicle systems based on experiences for decades. In Korea, where is now pursuing the development of KSLV-II, the research and development of launch vehicles using liquid-propellant propulsion system have been undergone during over 10 years. Hence test requirements for the development of units consisting of liquid-propellant propulsion system should be defined and Koreanized according to the domestic environment and circumstances and based on the experiences accumulated. In this paper requirements for the tests of units in liquid-propellant propulsion system, which can be feasible domestically, have been reviewed and defined.

  • PDF

Design, Implementation and Test of Flight Model of S-Band Transmitter for STSAT-3 (과학기술위성 3호 S-대역 송신기 비행모델 설계, 제작 및 시험)

  • Oh, Seung-Han;Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.553-558
    • /
    • 2011
  • This paper describes the development and test result of S-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels, S-band for Telemetry & Command and X-band for mission data. S-band Transmitter(STX) functionally made of modulator, frequency synthesizer, power amp and DC/DC converter. The transmission data is modulated by FSK(Frequency Shift Keying) and the interface between spacecraft sub-module and STX is RS-422 standard method. The FM STX is based on modular design. The RF output power of STX is 1.5W(31.7dBm) and BER of STX is under $1{\times}10^{-5}$ which meets the specification respectively. The FM STX is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Modeling of Wrist Discomfort with External Loads (손목 자세와 외부 부하에 따른 손목 불편도 모델링)

  • Choi, Kwang-Soo;Park, Jae-Kyu;Jung, Eui-S.;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.11-27
    • /
    • 2005
  • The objectives of this study are to analyze representative wrist postures while using hand tools and parts at general assembly processes, to evaluate perceived discomfort on the wrist when external loads are present, and to suggest an evaluation and prediction model of perceived discomfort. Sixteen subjects participated in an experiment to appraise perceived discomfort. Three types of the wrist postures with five levels of non-neutralities were analyzed when five levels of external load were applied to each posture. The ANOVA results showed that the perceived discomfort of wrist postures was significantly affected by both the wrist posture and external load (p$<$0.001). It was also shown that some of the interactions between external loads and the wrist postures(Flexion/$Extension^*$Load, Flexion/$Extension^*$supination/pronation, ulnar/radial $deviation^*$supination/pronation) were significant(p$<$0.001). The result implies that a new posture classification scheme for workload assessment methods may be needed to reflect such effects of external load and wrist posture. A regression model of perceived discomfort was developed with respect to wrist posture and external load from the experimental data. A subsequent experiment revealed that the correlation coefficient between the predicted values of perceived discomfort from the model and the actual values obtained from the experiment was about 0.98. It is expected that the results help to properly estimate the body stress resulting from worker's postures and external loads and can be used as a valuable design guideline to analyze potential hazard of musculoskeletal diseases in industry.

The Design and Implementation of a Network-based Stand-alone Motion System

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.865-870
    • /
    • 2003
  • A motion controller has been used variously in industry such as semiconductor manufacture equipment, industrial robot, assembly/conveyor line applications and CNC equipment. There are several types of controller in motion control. One of these is a PC-based motion controller such as PCI or ISA, and another is stand-alone motion controller. The PC bus-based motion controller is popular because of improving bus architectures and GUI (Graphic User Interface) that offer convenience of use to user. There are some problems in this. The PC bus-based solution allows for only one of the form factors, so it has a poor flexibility. The overall system package size is bigger than other motion control system. And also, additional axes of control require additional slot, however the number of slots is limited. Furthermore, unwieldy and many wirings come to connect plants or I/O. The stand-alone motion controller has also this limit of axes of control and wiring problems. To resolve these problems, controller must have capability of operating as stand-alone devices that resides outside the computer and it needs network capability to communicate to each motion device. In this paper, a network-based stand-alone motion system is proposed. This system integrates PC and motion controller into one stand-alone motion system, and uses CAN (Controller Area Network) as network protocol. Single board computer that is type of 3.5" FDD form factor is used to reduce the system size and cost. It works with Windows XP Embedded as operating system. This motion system operates by itself or serves as master motion controller that communicates to slave motion controller. The Slave motion controllers can easily connect to master motion system through CAN-network.

  • PDF

Recent Progress of MIRIS Development

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.4-23.4
    • /
    • 2011
  • MIRIS is the main payload of the Science and Technology Satellite-3 (STSAT-3). which is being developed by KASI for infrared survey observation of the Galactic plane at Paschen alpha wavelength. Wideband filters in I and H band will also be used to observe cosmic infrared background. The MIRIS will perform astronomical observations in the near-infrared wavelengths of 0.9~2 ${\mu}m$ using a 256 ${\times}$ 256 Teledyne PICNIC FPA sensor providing a 3.67 ${\times}$ 3.67 degree field of view with a pixel scale of 51.6 arcsec. The flight model of the MIRIS has been recently developed, The system performance tests have been made in the laboratory, including opto-mechanics test, vibration test, thermal vacuum test and passive cooling test down to 200K, using a thermally controlled vacuum chamber. Several focus tests showed good agreements compared to initial design parameters. Recent efforts are being concentrated to improve the system performances, particularly to reduce readout noise level in electronics. After assembly and integration into the satellite bus, the MIRIS will be launched in 2012.

  • PDF

Virtual Prototyping of Portable Consumer Electronic Products Based on HMI Functional Simulation (HMI 기능 시뮬레이션 기반 개인용 휴대전자제품의 가상시작)

  • Park, Hyung-Jun;Bae, Chae-Yeol;Moon, Hee-Cheol;Lee, Kwan-Heng
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.854-861
    • /
    • 2005
  • The functional behavior of a portable consumer electronic (PCE) product is nearly all expressed with human-machine interaction (HMI) tasks. Although physical prototyping and computer aided design (CAD) software can show the appearance of the product, they cannot properly reflect its functional behavior. In this paper, we propose a virtual prototyping (VP) system that incorporates virtual reality and HMI functional simulation in order to enables users to capture not only the realistic look of a PCE product but also its functional behavior. We obtain geometric part models of the product and their assembly and kinematics information with the help of CAD and reverse engineering tools, and visualize them with various display tools. We adopt state transition methodology to capture the HMI functional behavior of the product into a state transition chart, which is later used to construct a finite state machine (FSM) for the functional simulation of the product. The FSM plays an important role to control the transition between states of the product. The proposed VP system receives input events such as mouse clicks on buttons and switches of the virtual prototype model, and it reacts to the events based on the FSM by activating associated activities. The VP system provides the realistic visualization of the product and the vivid simulation of its functional behavior. It can easily allow users to perform functional evaluation and usability testing. Moreover, it can greatly reduce communication errors occurring in a typical product development process. A case study about VP of an MP3 player is given to show the usefulness of the proposed VP system.

  • PDF

Temperature Control of Injection Molding Machine using PI Controller with Input Restriction (PI 제어기의 입력제한을 이용한 사출 성형기 온도제어)

  • Jang, Yu-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.604-610
    • /
    • 2007
  • Injection molding is the most common method of shaping plastic resins for manufacturing a variety of parts. This injection molding is accomplished by injection molding machines (IMM) which consists of a hewer, a reciprocating screw, barrel assembly, and an injection nozzle. The plastic resin is fed to the machine through the hopper and it should be heated to the target melting temperature, which depends on material properties, as closely as possible with very small temperature overshoot in the barrel. Since the barrel, which has temperature dependent specific heat and thermal conductivity in the operating temperature range, is heated by the several electric heater bands, it is not an easy task to control the temperature of the barrel owing to the interference of neighboring heaters and its material properties. Though PID controller with auto-tuning capability is widely adopted in the nm, the auto-tuning process should be carried out whenever the operating temperature is changed significantly. Recently, though the predictive controller is developed and shows good performance, it has drawbacks: 1. Since the heat transfer modeling process is very complicated and should be carried out again when the barrel is changed, it is somewhat inappropriate in the field. 2. The controller performance is not validated in whole operating temperature range. In this paper, cascade type simple PI controller with input restriction is proposed to find the possibility of controlling the barrel temperature in the whole operating temperature range. It is shown by experiment that the proposed controller shows good performance. This result can be applied to design of PI controller with auto-tuning capability.

Design of Side Cores of Plastic Injection Mold with Interference Check (플라스틱 사출금형의 간섭 검사에 의한 사이드 코어의 설계)

  • 신기훈;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1064-1074
    • /
    • 1992
  • Eliminating the under-cut caused by interference between a mold and a product in designing a mold for in jection molding processes is a very important problem. In general, the under-cut problem can be avoided by side cores which are the principal members of a mold assembly. In this research, a procedure has been developed by which the side cores and the corresponding core and cavity plates of a mold are generated after identifying the mold faces preventing product faces from moving while being discharged. The characteristic features of the procedure suggested in this paper are as follows. One is that the interference faces between the product and the mold are derived only from the core plate(or cavity plate) alone without considering the product together. The other is that the algorithm in the designing of side cores and modifying molds, is very efficient because it uses Euler operations instead of Boolean operations.