• Title/Summary/Keyword: Design equilibrium constant

Search Result 32, Processing Time 0.03 seconds

Estimation of the Removal Capacity for Cadmium and Calculation of Minimum Reaction Time of BOF Slag (제강슬래그의 카드뮴 제거능 평가 및 필요반응시간 결정)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The kinetic sorption test was performed by changing the initial concentration and pH. Using pseudo-second-order model, the reactivity of furnace slag was quantitatively analyzed. Equilibrium removal amount ($q_e$) of furnace slag increased and rate constant ($k_2$) decreased with the increase of initial cadmium concentration. With the increase of pH, the equilibrium removal amount ($q_e$) and rate constant ($k_2$) increased in the same initial concentration. Required retention time was related to the inverse of the product of the equilibrium removal amount ($q_e$) multiplied by rate constant ($k_2$). The required retention time could be used to design the length of reactive column.

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

The Prediction of Vapor-Liquid Equilibrium Data for Ethanol/3-methyl-1-butanol System at Constant Temperature (정온하에서 Ethanol/3-methyl-1-butanol계의 기-액평형치 추산)

  • Lee, Joon-Man;Park, Young-Hae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2055-2061
    • /
    • 2013
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. Successful design of distillation columns in a separation process depend on the availability of accurate vapor-liquid equilibrium data. For the binary system of Ethanol/3-methyl-l-butanol mixture, isothermal Vapor-liquid equilibrium data were measured at temperature of 50, 55, 60, 65, 70, 75 and $80^{\circ}C$. An empirical relation to predict Vapor-liquid equilibrium data was obtained from the above measured data. The predicted values are compared with the measured ones to be in a good agreement within accuracy of ${\pm}0.0005$, ${\pm}0.0022$.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

Parameter Estimation of Shallow Arch Using Quantum-Inspired Evolution Algorithm (양자진화 알고리즘을 이용한 얕은 아치의 파라미터 추정)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.95-102
    • /
    • 2020
  • The structural design of arch roofs or bridges requires the analysis of their unstable behaviors depending on certain parameters defined in the arch shape. Their maintenance should estimate the parameters from observed data. However, since the critical parameters exist in the equilibrium paths of the arch, and a small change in such the parameters causes a significant change in their behaviors. Thus, estimation to find the critical ones should be carried out using a global search algorithm. In this paper we study the parameter estimation for a shallow arch by a quantum-inspired evolution algorithm. A cost functional to estimate the system parameters included in the arch consists of the difference between the observed signal and the estimated signal of the arch system. The design variables are shape, external load and damping constant in the arch system. We provide theoretical and numerical examples for estimation of the parameters from both contaminated data and pure data.

Estimation of Cadmium Removal Capacity on Furnace Slag in the Change of Initial Concentration and pH (초기농도와 pH 조건의 변화에 따른 제강슬래그의 카드뮴 제거능 평가)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1006-1011
    • /
    • 2010
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The removal capacity of furnace slag was analyzed using pseudo-second-order model. And the effective parameters of removal test were initial concentration and initial pH. According to equilibrium removal amount and reactive constant calculated by pseudo-second-order model, the removal capacity was analyzed. Equilibrium removal amount of furnace slag was linearly increased as increasing intial cadmium concentration. Because the pH was around 11, the removal mechanism of furnace slag could be both sorption and precipitation. Therefore the removal amount was increased due to initial concentration. pH was increased to around 11 in the case of "No treat", but the pH were 3.8 in the case of "HAc added" and 0.7 in the case of "HCl added". The removal amount was different 4.8, 1.19 and 0.27 mg/g. This results show the pH was major factor to remove cadmium using furnace slag.

  • PDF