• Title/Summary/Keyword: Design and Operation Parameters

Search Result 805, Processing Time 0.03 seconds

Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE (SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계)

  • 김윤호;윤병도;강영록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

The Optimal Operation Condition and Estimation Performance for 300MW Demonstration Gasifier (300MW급 실증 가스화기의 최적 운전조건 및 성능 예측)

  • Yoo, Jeong-Seok;Koo, Ja-Hyung;Paek, Min-Su;Lee, Hwang-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.368-371
    • /
    • 2008
  • The optimal operation condition of gasifier is one of the most important parameters to increase efficiency and reliability in IGCC plant. Also the prediction of the syngas composition and quantity must be predicted to carry out process design of the gasification plant. However, the gasifier process licensor are protective with information on process design and optimal gasifier design conditions. So, the most of process studies in the engineering company for gasification plant have carried out to look for key parameters and optimal design conditions using several prediction methods. In this paper, we present the estimated preliminary optimal operation condition of the 300MW Demonstration Entrain Flow Gasifier using Aspen Plus. The gasifier operation temperature considering slag flow was predicted by FactSage software and Annen Model.

  • PDF

Design of Monitoring System for Integrated Management of On-site Wastewater Treatment Plants and Development of its Operation Program (소규모 현장 오수처리시설의 통합관리를 위한 모니터링 시스템 설계 및 운영 프로그램 개발)

  • Cho, Young-Hyun;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.137-140
    • /
    • 2002
  • The monitoring system for integrated management of on-site wastewater treatment plants(biofilter) was designed and its operation program was developed. In design process, the research on monitoring parameters which will be able to represent condition and operation of the pilot plants was accomplished, and these parameters came to reveal with ORP(Oxidation-Reduction Potential), water level, pump and power on/off. Proposed monitoring system is composed with measurement, control, communication and display device, and PCB(Prototype Circuit Boards) and microcontroller (PIC16F877) technique are applied to its design of control device for performing specific function. also, The operation program of PC setup is developed in order to provide a convenience to the manager.

  • PDF

Optimization of Grinding Conditions and Prediction of Surface Roughness Using Taguchi Experimental Design (Taguchi 실험계획법에 의한 연삭가공조건 최적화 및 표면거칠기 예측)

  • 곽재섭;하만경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.37-45
    • /
    • 2004
  • Grinding is a finishing operation of products in various areas. Surface roughness of industrial components obtained in grinding operation is a critical quality measure but is a function of many operating parameters and their interactions. To achieve higher surface roughness and to identify the influence of grinding parameters on surface roughness, it is an ideal situation fer using the design of experiments. This paper presents an successful optimization of grinding conditions and prediction of surface roughness using the design of experiments. From the experimental verification tests, it was observed that this approach was useful as a robust design methodology for grinding operation.

Effect of Process Parameters on Surface Roughness in Lapping Operation (래핑의 공정변수가 표면거칠기에 미치는 영향)

  • Choi, Mansung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • Lapping is a very complicated and random process resulting from the variation of abrasive grains in its sizes and shapes and from the numerous factors having an effect on the process quality. This paper presents a study of a $2^4$ full factorial experimental design and analysis to optimize surface quality in lapping operation. The optimization of the factors to obtain minimum surface roughness was carried out by incorporating effect plots, main effect plots, interaction plots, analysis of variance(ANOVA), surface plots, and contour plots. The statistical design experiments, designed to reduce the total number of experiments required, indicated that, within the selected conditions, all the parameters influenced at a significance level of 5%. In addition, some of the possible interactions between these parameters also influenced the lapping process, especially those that were of third order. A regression model was suggested and fitted the experimental data very well.

Optimization of fairway design parameters: Systematic approach to manoeuvring safety

  • Gucma, Stanislaw;Zalewski, Pawel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • The article presents a systematic approach to design of marine navigation channels parameters resulting from manoeuvring and operational safety. Relations between the parameters of waterway system elements and the conditions of safe ship operation have been determined and the objective function of waterway parameters' optimization problems has been minimized with respect to variables of construction and operation costs. These costs have been functionally associated to variables of channel width at the bottom and fairway depth. The method of fairway's width computation at specified safe depth at the preliminary and detailed stages of waterway design has been proposed. The results of this method application have been illustrated with two examples: 1. The modernization of Szczecin-Swinoujscie fairway aimed at accepting vessels of 60,000 DWT capacity. 2. Construction of an approach channel leading to a newly built container terminal in Swinoujscie harbour (Poland), handling ocean-going container ships of 20,000 TEU capacity.

Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation (유압밸브 구동용 서보 액추에이터의 신뢰성 향상을 위한 설계 파라미터 도출)

  • Sung, Baek Ju;Kim, Do Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.475-482
    • /
    • 2014
  • The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

Analysis of Design and Part Load Performance for gas Turbine Cogeneration Systems (가스터빈 열병합발전 시스템의 설계점 설정 및 부분부하 성능해석)

  • 김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2167-2176
    • /
    • 1994
  • This paper presents some useful design criteria for the turbine cogeneration system through both the design and off-design analysis. Comparative analysis of the part load performance is carried out for several gas turbines which have different design parameters represented by the turbine inlet temperature and pressure ratio. It is shown that the variation in part load efficiency considerably depends on the design parameter. The off-design operation of the heat recovery steam generator is simulated by introducing adequate assumptions for the heat transfer process. It is turned out that the design parameters of heat recovery steam generator should be determined by considering the favorable operation at the off-design conditions.

A Study on the Design of Hemming Process for Automotive Body Panels (자동차 패널의 헤밍 공정 설계에 관한 연구)

  • 안덕찬;이경돈;인정제;김권희
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.624-630
    • /
    • 2000
  • Typical automotive opening parts, i. e. hood trunk lid and door, are made through the press operations such as drawing, trimming, flanging, and hemming. The dimensional accuracy of stamped panels is mainly dependent on the drawing operation. However, the gap between outer panels and opening parts, which is important to the appearance quality of the assembled body, is directly influenced by the flanging and hemming operation. In this study, the relation between the design parameters of the hemming operation and the defect of roll-in is shown. The effects of some design parameters on the gap are examined using CAE. furthermore, the simulated results of the hemmed part of tailgate comer are shown and discussed.

  • PDF

Design Parameter Structure for Architectural Elements of External Kinetic Facade

  • Ji, Seok-Hwan;Lee, Byung-Yun
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • Purpose: This paper aims to analyse the composition system of architectural elements including shape, kinetic and material elements of kinetic facades and establish the design parameter system as a common conceptual and practical knowledge sharing platform with mechanical and electrical experts. Method: This research has been conducted in a three steps. At first, 120 cases of external shading devices are analyzed and their classification criteria have been established. Secondly geometric, kinetic and material elements are categorized in a common kinetic facade coordinates system considering environmental effects and operation method, and the applicability of combination of each element are tested. Lastly core design parameters for each element have been established in a common office building installation coordinate. Result: Geometry elements are categorized into seven geometric shapes and kinetic elements is categorized into basic linear and rotational motion and combinational folding and rolling motion. The combined set of parameters for three elements composes the whole design parameters for architectural elements of kinetic façade. Design parameters of shape elements are composed of shape, installation and arrangement parameters; design parameters for kinetic elements are composed of axis and range parameters; and design parameters of material elements are composed of thermal, lighting and color parameters.