• Title/Summary/Keyword: Design allowable

Search Result 912, Processing Time 0.023 seconds

Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports (재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석)

  • Park, Jin-Suk;Ko, Sang Seom;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

A Control Value Analysis on the Axial Force of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 축력에 대한 관리기준치 분석)

  • Jung, Sang-Kug;Lee, Kwang-Chan;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.171-180
    • /
    • 2000
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrumentation values of the whole excavation depth of the four case sites using geometric averaging as a statistical method. The range of the study is confined to three things: (1) the axial force of the braced excavation walls among a variety of items prescribed in the control values by stress deformation of walls and adjacent structures; (2) by approximation of the allowable and design value; (3) and by safety factor. As a res it is desirable to revise "(Long term allowable stress + Short term allowable stress)/2 ~ Short term allowable stress," presented in the present control values by stress deformation of walls and adjacent structures, to "(Long term allowable stress + Short term allowable stress)/5 ~ (Short term allowable stress)/3." The result also shows that since there is a difference of about 3.5%, it is not necessary to revise 70, 90, and 100 percent of LEVEL I, II, and III, prescribed in the control values by the allowable and design value approximation. In addition, modifying the control value by the safety factor, now 1.07, is unnecessary, although it varies little difference from the present value.

  • PDF

Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade - (국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 -)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

The Estimation of Bearing Capacity of Auger-drilled Pile in Sand-Gravel by Dynamic Load Test (동재하시험에 의한 모래자갈층에 근입된 매입말뚝의 지지력 산정)

  • Choi, Ki-Chul;Moon, Yu-Ho;Oh, Won-Keun;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1819-1826
    • /
    • 2007
  • This study results of performed field load test in order to estimate the best pile length assessment and allowable bearing capacity of the pile foundation. End of initial driving(EOID) and restrike of pile dynamic loading tests were performed to calculate allowable bearing capacity of the experimental pile side and results were compared with the allowable bearing capacity estimated by theory. The results of allowable bearing capacity by EOID test is $1.08{\sim}1.21$ in the range of compared to the capacity calculated by the Structure Foundation Design Criterion. Allowable bearing Capacity by restrike of pile dynamic loading test is $1.32{\sim}1.48$ in the range of compared to the Structure Foundation Design Criterion. The Foundation Design Criterion underestimated the pile capacity. If the bearing capacity calculated by Structure Foundation Design Criterion is 100, EOID of pile dynamic loading test is 116, restrike of pile dynamic loading test is 138 for 20m pile used in this experimental.

  • PDF

A Probabilistic Structural Design Method of Composite Propulsion System (복합재 추진기관의 확률적 구조 설계 기법)

  • Hwang, Tae-Kyung;Kim, Hyung-Kun;Kim, Seong-Eun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2013
  • This paper describes a probabilistic structural design method of composite propulsion system by comparing safety factor based on average value and allowable value with structural reliability. Generally, the required structural safety factor and reliability of composite pressure vessel are 1.5 and 0.999, respectively. In the case of structural design using average strength, the safety factor which satisfies the required structural reliability depends on the variation of fiber strength. However, the structural design using allowable value shows constant safety factor for the variation of fiber strength, because the allowable value of fiber strength is calculated by considering the variation of fiber strength. Through the analysis results, it was known that the fiber strength is the most important design random variable for the structural design of composite pressure vessel and the variation of fiber strength must be minimized to develop the high performance composite propulsion system.

Study for Determining Design Allowable Values of Light Weight Composite Unmanned Aircraft Structures (경량 복합재료 무인기 구조물 설계 허용치 설정 방안 연구)

  • Kim, Sung Joon;Park, Sang Wook;Kim, Tae Uk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The development of effective design allowable values for unmanned composite aircraft is an issue of paramount concern for the industry. The application of conventional manned aircraft structural certification methods to unmanned aircraft such as prototype and technology demonstrators, can lead to excessively long development time and costs. In this paper, the determining method of composite structure design allowable values for light composite unmanned aircraft is presented to reduce to the structural weight. This paper seeks to show the applicability of composite B-basis material values as a design allowable of light composite unmanned aircraft structures. A review of different civil and UAV targets failure probability is given. From the results, the researchers can know that the requirements of light composite unmanned aircraft design allowable should be alleviated, compared to manned composite aircrafts.

A Study on the Uncertainty of Structural Cross-Sectional Area Estimate by using Interval Method for Allowable Stress Design

  • Lee, Dongkyuc;Park, Sungsoo;Shin, Soomi
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • This study presents the so-called Modified Allowable Stress Design (MASD) method for structural designs. The objective of this study is to qualitatively estimate uncertainties of tensile steel member's cross-sectional structural designs and find the optimal resulting design which can resist all uncertainty cases. The design parameters are assumed to be interval associated with lower and upper bounds and consequently interval methods are implemented to non-stochastically produce design results including the structural uncertainties. By seeking optimal uncertainty combinations among interval parameters, engineers can qualitatively describe uncertain design solutions which were not considered in conventional structural designs. Under the assumption that structures have basically uncertainties like displacement responses, the safety range of resulting designs is represented by lower and upper bounds depending on given tolerance error and structural parameters. As a numerical example uncertain cross-sectional areas of members that can resist applied loads are investigated and it demonstrates that the present design method is superior to conventional allowable stress designs (ASD) with respect to a reliably structural safety as well as an economical material.

Current practices and future directions of steel design in Japan

  • Yamaguchi, Eiki
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.159-168
    • /
    • 2005
  • Four design codes/regulations for steel structures in Japan are briefly reviewed. Some of them employ the limit state design concept while the others are still based on the allowable stress design concept. The process for revision is now in action. The directions in the development of structural design codes are also reported herein. It is noted that a current trend in this development is to employ the performance-based design concept that has been successfully implemented in some seismic design codes.

Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 최초통과확률법의 허용기준 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.317-326
    • /
    • 2013
  • Probabilistic design methods can consider uncertainties of design variables and are widely used in the design of vertical breakwaters. The probabilistic design methods include a partial safety factor method, reliabilitybased design method, and performance-based design method. Especially the performance-based design method calculates the accumulated sliding distance during the lifetime of the breakwater or during a design storm. Recently a time-dependent performance-based design method has been developed based on the first-passage probability of individual sliding distance during a design storm. However, because the allowable criteria in the first-passage probability method are not established, the stability of structures cannot be quantitatively evaluated. In this study, the allowable first-passage probabilities for two limit states are proposed by calculating the first-passage probabilities for the cross-sections designed with various water depths and characteristics of extreme wave height distributions. The allowable first-passage probabilities are proposed as 5% and 1%, respectively, for the repairable limit state (allowable individual sliding distance of 0.03 m) and ultimate limit state (allowable individual sliding distance of 0.1 m). The proposed criteria are applied to the evaluation of the effect of wave-height increase due to climate change on the stability of the breakwater.

Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility (변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델)

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF