• Title/Summary/Keyword: Design Ultimate Load

Search Result 512, Processing Time 0.027 seconds

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Estimation of Flexural Strength of Hollow Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 중공형 콘크리트 충전 강관말뚝의 휨강도 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.91-100
    • /
    • 2019
  • Hollow prestressed concrete-filled steel tube (HCFT) piles, which combines PHC piles inside thin-wall steel tubes, were developed to increase the flexural strength of the pile with respect to the lateral load. Since P-M curves are needed for evaluating the structural safety of piles when applying HCFT piles to fields, equations for plotting P-M curves of HCFT piles in limit states were proposed. When the yield strength is applied to the steel tube and PC steel bar of HCFT piles, the proposed equations significantly underestimated the flexural strength of HCFT piles. Unlike the flexural strength test results, the proposed equations also provide greater flexural strengths for 12 mm thick steel pipe piles with the same diameter than for HCFT piles. However, when the ultimate strengths are used instead of the yield strengths for the steel tube and PC steel bar, the proposed equations provide the flexural strengths very close to the flexural strength test results.

Shear behavior of reinforced HPC beams made of a low cement content without shear reinforcements

  • Tang, Chao-Wei;Chen, Yu-Ping;Chen, How-Ji;Huang, Chung-Ho;Liu, Tsang-Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.21-37
    • /
    • 2013
  • High-performance concrete (HPC) usually has higher paste and lower coarse aggregate volumes than normal concrete. The lower aggregate content of HPC can affect the shear capacity of concrete members due to the formation of smooth fractured surfaces and the subsequent development of weak interface shear transfer. Therefore, an experimental investigation was conducted to study the shear strength and cracking behavior of full-scale reinforced beams made with low-cement-content high-performance concrete (LcHPC) as well as conventional HPC. A total of fourteen flexural reinforced concrete (RC) beams without shear reinforcements were tested under a two-point load until shear failure occurred. The primary design variables included the cement content, the shear span to effective depth ratio (a/d), and the tensile steel ratio (${\rho}_w$). The results indicate that LcHPC beams show comparable behaviors in crack and ultimate shear strength as compared with conventional HPC beams. Overall, the shear strength of LcHPC beams was found to be larger than that of corresponding HPC beams, particularly for an a/d value of 1.5. In addition, the crack and ultimate shear strength increased as a/d decreased or ${\rho}_w$ increased for both LcHPC beams and HPC beams. This investigation established that LcHPC is recommendable for structural concrete applications.

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Eo, Seok-Hong;Ha, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5318-5326
    • /
    • 2014
  • This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

Design of LB-DECK Based on Performance Evaluation (성능 평가에 근거한 LB-DECK의 설계)

  • Cho, Gyu Dae;Lho, Byeong Cheol;Cho, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This study performed research for improvement on basic concept of PBD applying suitable design method before and after LB-DECK composition. According to study, in this case, before composition, it can reduce minuteness cracks by increasing bending tensile strength utilizing polymer concrete, can expect sensuous effect, improve durability as to low permeability, and was evaluated that can reduce covering depth according as it. Also, because LB-DECK baseplate that apply the empirical design method composite is superior load resistance ability than general baseplate, safety is increased, it is expected to secure constructibility and economic performance at the same time because reinforcement arrangement method and reinforcement amount are fixed even if span effective span is increased at ultimate strength design method application.

A Case Study on the Stability Evaluation of Piles for Negative Skin Eviction by the LRFD Approach (LRFD설계법에 의한 부마찰력이 작용하는 말뚝의 안정성 평가 사례 연구)

  • Cho Chun-Whan;Kim Woong-Kyu;Lee Woo-Chel
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.123-131
    • /
    • 2005
  • Recently, construction activities in reclaimed onshore areas increase in our country In this case, the stability evaluation of the piles for negative skin friction is an important factor for the design of pile foundation in soft grounds. Nevertheless, the design of piles for negative skin friction (or downdrag forces) is probably poorly understood by many geotechnical engineers. It is mainly because only the bearing capacity aspect is taken into account for the downdrag evaluation of piles in most of design specifications. However, the problems fur negative skin friction of piles are mostly related with settlement rather than bearing capacity Meanwhile, LRFD (Load Resistance Factor Design) approach considers both ultimate limit state in terms of bearing capacity and serviceability limit state in terms of settlements. This paper proposes LRFD approach for the downdrag evaluation of piles and compares this approach to traditional design approach. And also a case history is analyzed. Through the analysis some suggestions to solve the problems for the design of piles for negative skin friction are suggested.

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.