• Title/Summary/Keyword: Design Ultimate Load

Search Result 510, Processing Time 0.033 seconds

Basic Research for Resistance Prediction of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 강도 예측에 대한 기초 연구)

  • Oh, Young-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.218-227
    • /
    • 2014
  • In this paper, it performed to the elastic-plastic large deflection series analysis using the experimental model and predicted a failure mode and ultimate strength. The collapse mode of numerical analysis model is formed a plastic hinge on loaded flange and consistent with the collapse mode of experimental model. Also, The yield line is formed in the web could observed that have occurred the crippling collapse mode and the ultimate loads of the experimental model and numerical analysis model have maintained linearly Means 1.07, Standard deviation 0.04, Coefficient of variation(COV) 0.04 and the result of ultimate loads have appeared approximately 8% error rate. it was found that very satisfied to the experimental results and the applied rules. if it is considered to be maintain a reasonable safety level, it is possible to predict the failure modes of aluminium alloy plate girders and ultimate loads.

Development of Probability Based LRED Formats for R.C. Structure Design (철근콘크리트구조물의 LRED 설계식 개발)

  • 김상효;조형근;배규웅;박흥석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.29-34
    • /
    • 1990
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of loadings and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local environments(loadings) and workmanship resistances), it is recognized to develop the design creterion compatible with domestic requirements. In this study, therefore, the proper probability based design criterion(load and resistance factor design formats) has been developed based on the safaty levels observed from calibration with existing standards, which applies to the ultimate limit states of reinforced concrete members.

  • PDF

TCP-GT: A New Approach to Congestion Control Based on Goodput and Throughput

  • Jung, Hyung-Soo;Kim, Shin-Gyu;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.499-509
    • /
    • 2010
  • A plethora of transmission control protocol (TCP) congestion control algorithms have been devoted to achieving the ultimate goal of high link utilization and fair bandwidth sharing in high bandwidth-delay product (HBDP) networks. We present a new insight into the TCP congestion control problem; in particular an end-to-end delay-based approach for an HBDP network. Our main focus is to design an end-to-end mechanism that can achieve the goal without the assistance of any network feedback. Without a router's aid in notifying the network load factor of a bottleneck link, we utilize goodput and throughput values in order to estimate the load factor. The obtained load factor affects the congestion window adjustment. The new protocol, which is called TCP-goodput and throughput (GT), adopts the carefully designed inversely-proportional increase multiplicative decrease window control policy. Our protocol is stable and efficient regardless of the link capacity, the number of flows, and the round-trip delay. Simulation results show that TCP-GT achieves high utilization, good fairness, small standing queue size, and no packet loss in an HBDP environment.

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut and Tie Model (비선형 스트럿-타이 모델에 의한 PC 구조물의 정착부 설계)

  • 배한옥;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.392-397
    • /
    • 1997
  • In this paper, design and analysis of anchorage zone in prestressed concrete structure using nonlinear strut and tie model is presented. Nonlinear strut and tie model is an analysis and design model which constructs strut and tie model based on nonlinear analysis considering the nonlinear behavior of concrete. Based on the nonlinear strut and tie model, the analysis and design are performed for the anchorage zone having singular concentric tendons, singular eccentric tendons and multiple tendons, respectively. For verification of the model, comparisons are made with experimental results as well as results by linear strut and tie models. from the comparisons, it is shown that the design of the anchorage zone by the nonlinear model is still economical without loosing the degree of safety and the prediction of the ultimate load by the nonlinear model gives better accuracy than by the linear one.

  • PDF

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

Ultimate Strength and Design Method of Turn-buckle for Measuring Tensile Force (인장력 측정용 턴버클의 극한강도 및 설계방법)

  • Lee, Swoo Heon;Shin, Kyung Jae;Lee, Hee Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • A turn-buckle is capable of adjusting the tensile force by left-hand threads and right-hand threads between tension members. There are different types of turn-buckles according to tension member and connection form but the practical and existing turn-buckles are incapable of measuring the tensile force. A turn-buckle for adjusting and measuring tensile force has therefore been developed. This study shows the ultimate strength and reliability for measurement of the new turn-buckles through finite element analysis of the developed ones. From analytic results of the new turn-buckles which have the measurement limit loads of 100kN, 200kN and 300kN, the ultimate strength is approximately five times stronger than the measurement limit capacity. Additionally, a review of the new turn-buckle, which has the measurement limit load of over 300kN, shows that there is a tendency for the size of turn-buckle to become larger. So the connection devices were designed and the loading test was conducted from the concept that the parallel connection of turn-buckle with 300kN capacity can measure the tensile force of 600kN. The results of parallel loading test show the sufficient possibility. Furthermore, the mock-up test was constructed to investigate the release of initial load and corrosion when the new turn-buckle is installed at the outdoor and exposed to rain and atmosphere.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

Estimation of LRFD Resistance Bias Factors for Pullout Resistance of Soil-Nailing (쏘일네일링의 인발저항에 대한 LRFD 저항편향계수 산정)

  • Son, Byeong-Doo;Lim, Heui-Dae;Park, Joon-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.5-16
    • /
    • 2015
  • Considering the conversion of the Korea Construction Standards to Limit State Design (LSD), we analyzed the resistance bias factor for pullout resistance, as a part of the development of the Load and Resistance Factor Design (LRFD) for soil nailing; very few studies have been conducted on soil nailing. In order to reflect the local characteristics of soil nailing, such as the design and construction level, we collected statistics on pullout tests conducted on slopes and excavation construction sites around the country. In this study a database was built based on the geotechnical properties, soil nailing specifications, and pullout test results. The resistance bias factors are calculated to determine the resistance factor of the pullout resistance for gravity and pressurized grouting method, which are the most commonly used methods in Korea; moreover, we have relatively sufficient data on these methods. We found the resistance bias factors to be 1.144 and 1.325, which are relatively conservative values for predicting the actual ultimate pullout resistance. It showed that our designs are safer than those found in a research case in the United States (NCHRP Report); however, there was an uncertainty, $COV_R$, of 0.27-0.43 in the pullout resistance, which is relatively high. In addition, the pressurized grouting method has a greater margin of safety than the gravity grouting method, and the actual ultimate pullout resistance determined using the pressurized grouting method has low uncertainty.

Analytical evaluation of a modular CFT bridge pier according to directivity

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper focuses on the analytical behavior of modular circular concrete-filled tubular (CFT) column with enhanced bracing details. To design a full-scale bridge pier of multiple circular concrete-filled tubes, numerical analysis was used to evaluate structural performance according to load directivity. In previous research (Ma et al. 2012, Shim et al. 2014), low cycle fatigue failure at bracing joints was observed, so enhanced bracing details to prevent premature failure are proposed in this analysis. The main purpose of this research is to investigate seismic performance for the diagonal direction load without premature failure at the joints when the structure reaches the ultimate load. The ABAQUS finite-element software is used to evaluate experimental performance. A quasi-static loading condition on a modular bridge pier is introduced to investigate structural performance. The results obtained from the analysis are evaluated by comparing with load-displacement responses from experiments. The concrete-filled tubes with enhanced bracing details showed higher energy dissipation capacity and proper performance without connection failure for a diagonal load.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.