• Title/Summary/Keyword: Design Test Evaluation

Search Result 2,817, Processing Time 0.042 seconds

A study on the development of a performance evaluation test apparatus for reinterpreting the vibration demand response spectrum for waterproof layers (방수층에 전달되는 진동 요구응답스펙트럼을 재해석 한 성능평가 시험장치 개발에 관한 연구)

  • Kim, Soo-Yeon;Lee, Seung-Jin;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.208-209
    • /
    • 2021
  • In 2017, 100 aftershocks with a magnitude of 2.0~3.0 and 615 minor earthquakes in Pohang in Korea caused the collapse and destruction of aggregate, tile, glass, and other structural components of multi-family houses constructed as finishing materials for buildings, causing damage to vehicles and casualties. Based on this factor, seismic design standards were established for non-structural elements of buildings that were applied only to past structures. Therefore, this study reinterpreted various vibration response spectra transmitted to waterproof layers as well as the definition and concept of the waterproof layer demand response spectrum derived by developing various vibration response test evaluation devices through a new testing apparatus.

  • PDF

The Effects of the 'Solar system and Stars' Unit Using Backward Design 2.0 on Science Academic Achievement, Performance Evaluation, and Science Class Satisfaction (백워드 설계 2.0을 활용한 '태양계와 별' 단원 수업이 과학 학업성취도와 수행평가 및 과학 수업 만족도에 미치는 효과)

  • Son, Junho;Kim, Hyunry
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • In order to help elementary students understand the astronomical unit in depth, this study applied backward design 2.0 to check the effect on students' science academic achievement, performance evaluation, and science class satisfaction. As a result of the study, there was no statistically significant difference in the science achievement test, but the average score of the experimental group has improved. As a result of the performance evaluation test, there was a statistically significant difference because the feedback was well provided through the process-focused assessment and it helped in-depth understanding. As a result of the science class satisfaction test, there was a statistically significant difference in the areas of science curriculum and peer relation except for the science teacher area. This is because a differentiated science curriculum was designed through analysis of achievement standards, and various teaching methods of student-centered were implemented to reach achievement standards. We hope this study will focus on the impact of backward design 2.0 on learners in elementary science classes and help find ways to effectively apply backward design 2.0 in the field.

A Study of Fatigue Damage Factor Evaluation for Railway Turnout Crossing using Qualitative Analysis & Field Test (현장측정 및 정성분석기법을 이용한 분기기 망간 크로싱의 피로손상도 평가에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Eum, Ki-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.881-893
    • /
    • 2008
  • The major objective of this study is to investigate the fatigue damage factor evaluation of immovability crossing for railway turnout by the field test and qualitative analysis. From the field test results of the servicing turnout crossing and qualitative analysis with frictional wear which section stiffness decreased, it was evaluated fatigue life of servicing turnout crossing. Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in turnout crossing using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis and evaluation, which is easily applicable in engineering practices of designers. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space solution. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience.

CRASHWORTHY DESIGN AND EVALUATION ON THE FRONT-END STRUCTURE OF KOREAN HIGH SPEED TRAIN

  • Koo, J.S.;Youn, Y.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.173-180
    • /
    • 2004
  • An intensive study was conducted for the crash worthy structural design of the recently developed Korean High Speed Train (KHST). Two main design concepts were set up to protect both crews and passengers from serious injury in heavy collision accidents, and to reduce damage to the train itself in light collision accidents. A collision against a movable 15-ton rigid obstacle at 110 kph was selected from train accident investigations as the accident scenario for the heavy collisions. A train-to-train collision at the relative velocity of 16 kph was used for the light collision. The crashworthiness behaviors of KHST were numerically evaluated using FEM. Analysis results using 1-D collision dynamics model of the full rake consist and 3-D shell element model of the front end structure showed good crashworthy responses in a viewpoint of structural design. Occupant analyses and sled tests demonstrated that KHST performed well enough to protect occupants under the considered accident scenarios. Finally our numerical approaches were evaluated by a real scale collision test.

Carbody strength evaluation for a light rail vehicle (경전철 차량 개발을 위한 차체 강도 평가)

  • 김진혁;박근수;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.466-473
    • /
    • 1998
  • LRV(Light Rail Vehicle) is one of the most useful way for urban transit. HDPIC has designed and manufactured the LRV train set for Manila Line 1 expansion. The LRV is composed of two carbody sections which are coupled by a articulated bogie. The articulated bogie and two motorized bogies have slewing rings in order to improve the curving performance and ride quality. Carbody structures are mainly made of low-carbon stainless steel (STS301L), and the carbody bolsters and draft sills are made of rolled steel for welded structures. The authority's specifications specified the design load conditions and weight limits. Design load conditions are vertical load, compressive load and diagonal jacking, and the maximum axle load is 10.7 ton. In order to meet those requirements, the stiffness and strength of carbody structure were predicted using finite element analysis during design stage. The half or full structure is modeled and analyzed with design load conditions, and critical areas are analysed in detail using sub-modeling method. The strength and strength of carbody structure was also verified by the load test. The analysis and test results show a good agreement.

  • PDF

Design of Trans-cavitating Propellers and Performance Analyses of the Test Result

  • Yim, Boh-yun;Kim, Ki-Sup;Ahn, Jong-Woo;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.13-30
    • /
    • 1998
  • The design method for trans-cavitating propellers is considered as the combination of super-and sub-cavitating propellers. Especially the design method of the super-cavitating region of the propeller blade is elaborated. A design example is shown. Encouraging test results obtained in the Korea Research Institute of Ship and Ocean (KRISO) cavitation tunnel of a model designed by the present method are discussed.

  • PDF

Optimal Design of Vibration Isolation System in Optical Disc Drives (광디스크 드라이브의 방진계 최적설계)

  • 이은경;이기성;장헌탁;임경화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.961-966
    • /
    • 2001
  • The schematic design process is formulated to develop the vibroisolating rubber mount in optical disc drives. The dynamic model of vibration isolation system is established by using a rigid body with 6 degree of freedom and linear springs with damping property. Considering the practical vibration condition of DVDP(Digital Versatile Disk Player), the required properties of vibroisolating rubber mounts are investigated. Also finite element model of a vibroisolating rubber mount is used to obtain shape design concept and identify the characteristics of a rubber mount which satisfies the required properties from previous design stage. Finally the evaluation method of dynamic properties of vibroisolating rubber mounts is established by utilizing modal test method. Based on the developed process, vibroisolating rubber mounts with a good performance have been developed.

  • PDF

Usability Test Analysis for Design on Integrated Automotive Cockpit Module System (자동차 전장 통합 모듈 시스템 설계를 위한 사용성 평가)

  • 홍성만;박범;이성용
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.157-167
    • /
    • 2003
  • More and more many people show a keen interest in the ergonomics application car. One of the recent trends of cockpit development is to integrate fore part of whole cockpit and compartment. The goal of this study is to develop and Analysis of User's Convenience a cockpit prototype based on the design guide of cockpit integration module. The process of this study has been followed analyzing development trend of next generation Automotive cockpit, extracting the design factor needed to making integration module and laying down the design guide of cockpit integration module. Finally, this study is indicate an instance that evaluation of utilization with Integrated Automotive Cockpit Module System.

Experiment and Simulation Study on Performance Evaluation and Design of Fin-Stabilizer (핀 안정기 설계와 성능평가를 위한 모형시험과 시뮬레이션 연구)

  • Cho Seok-Kyu;Hong Sa-Young;Jang Taek-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • Recently, very large container ships are emerging as shipment of containers is expected to rapidly increase near future. A possibility of roll resonant motion in a seaway is expected to noticeably increase for large container ships of which capacity ranges 8,000 to 15,000 TEU due to relatively wide breadth and shallow draft comparing to conventional container ships. In this paper, a design and performance evaluation of a fin stabilizer for a 9,000 TEU container ship is carried out. The weak opposed control concept is adopted for the design. Time domain simulations and model tests are performed for performance evaluation. The design prediction, the model tests and the simulations show generally good agreements.

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.