• 제목/요약/키워드: Design Spectral Acceleration

검색결과 88건 처리시간 0.026초

구조물과 부계통간의 연계방법에 따른 지진응답 분석 (Analysis of Seismic Response due to the Dynamic Coupling Between a Primary Structure and Secondary System)

  • 정광섭;곽신영;최인길;임승현
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.87-93
    • /
    • 2020
  • Seismic responses due to the dynamic coupling between a primary structure and secondary system connected to a structure are analyzed in this study. The seismic responses are compared based on dynamic coupling criteria and according to the error level in the natural frequency, with the recent criteria being reliant on the error level in the spectral displacement response. The acceleration responses and relative displacement responses of a primary structure and a secondary system for a coupled model and two different decoupled models of two degrees-of-freedom system are calculated by means of the time integration method. Errors in seismic responses of the uncoupled models are reduced with the recent criteria. As the natural frequency of the secondary system increases, error in the natural frequency decreases, but seismic responses of uncoupled models can be underestimated compared to that of coupled model. Results in this paper can help determine dynamic coupling and predict uncoupled models' response conservatism.

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

응답스펙트럼해석법을 이용한 배전반의 내진건전성 해석 (Seismic Integrity Analysis of an Electric Distributing Board Using the Response Spectra Analysis Method)

  • 최영휴;김수태;설상석;문성춘
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, a response spectrum analysis of an electric distributing board (EDB) was conducted to investigate seismic integrity in the design stage. For the seismic analysis, the required response spectra of a safe shutdown earthquake with 2% damping (RRS/SSE-2%) specified in GR-63-CORE Zone 4 was used as the ground spectral acceleration input. A finite element method modal analysis of the EDB was also performed to examine the occurrence of resonance within the frequency range of the earthquake response spectrum. Furthermore, static stress caused by deadweight was analyzed. The resultant total maximum stress of the EDB structure was calculated by adding the maximum stresses from both seismic and static loads using the square root of the sum of the squares (SRSS) method. Finally, the structural safety of the EDB was investigated by comparing the resultant total maximum stress with the allowable stress.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발 (Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method)

  • 최인섭;장지상;김준희
    • 한국전산구조공학회논문집
    • /
    • 제30권6호
    • /
    • pp.523-530
    • /
    • 2017
  • 본 연구에서는 역량스펙트럼법을 이용해 얻어진 구조물의 성능점을 확률적으로 평가하는 방법을 제시하였다. ATC-40에 따라 역량스펙트럼법을 이용하여 4층 1경간 철골구조물의 성능점을 산정하였다. 요구스펙트럼을 이용하여 구조물의 성능한계를 초과하는지 여부를 분석하기 위해 구조부재의 소성변형각으로부터 정의되는 구조물의 성능한계에 대해 한계변위를 도출하였다. 또한 설계응답스펙트럼과 유사한 응답스펙트럼을 가지는 인공지진파 30개를 선정하여 스펙트럼 가속도에 따른 각 성능한계의 초과여부를 통해 fragility curve를 도출하였다. 관측된 초과확률을 이용하여 fragility curve를 도출하기 위해 maximum likelihood method를 사용하였다. 각 성능한계점에 대응하는 설계응답스펙트럼의 응답가속도값에서 성능한계점을 초과할 확률은 존재하는 것으로 확인되었다. 본 방식은 구조물의 성능점에 대해 지진파의 불확실성을 고려한 확률적 평가가 가능하고, 시간증분해석이 필요하지 않아 해석시간을 상당부분 단축시킬 수 있다는 장점이 있다.

9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구 (Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes)

  • 이철호;김성용;박지훈;김동관;김태진;박경훈
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

고진동수 지진에 대한 기기 정착부의 비탄성 거동을 고려한 지진취약도 평가 (Seismic Fragility Analysis Considering the Inelastic Behavior of Equipment Anchorages for High-Frequency Earthquakes)

  • 임승현;곽신영;최인길;정재욱;김석철
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.261-266
    • /
    • 2021
  • Nuclear power plants in Korea were designed and evaluated based on the NRC's Regulatory Guide 1.60, a design response spectrum for nuclear power plants. However, it can be seen that the seismic motion characteristics are different when analyzing the Gyeongju earthquake and the Pohang earthquake that has recently occurred in Korea. Compared to the design response spectrum, seismic motion characteristics in Korea have a larger spectral acceleration in the high-frequency region. Therefore, in the case of equipment with a high natural frequency installed in a nuclear power plant, seismic performance may be reduced by reflecting the characteristics of domestic seismic motions. The failure modes of the equipment are typically structural failure and functional failure, with an anchorage failure being a representative type of structural failure. In this study, comparative analyses were performed to decide whether to consider the inelastic behavior of the anchorage or not. As a result, it was confirmed that the seismic performance of the anchorages could be increased by considering the inelastic behavior of an anchorage.

국내 5개 주요 도시에 대한 등재해도 스펙트럼 (Uniform Hazard Spectra of 5 Major Cities in Korea)

  • 김준경;위성훈;경재복김준경
    • 한국지구과학회지
    • /
    • 제37권3호
    • /
    • pp.162-172
    • /
    • 2016
  • 최근 미국 노스리지 지진(1994)과 일본 고베 지진(1995) 발생 이후 다양한 구조물 및 건축물을 설계할 때 성능 기반 설계 개념이 적극적으로 도입되고 있다. 성능기반 설계가 도입되면서 구조물 각각의 성능에 적합한 연발생빈도의 등재해도 스펙트럼이 요구되고 있다. 10 인의 지진 및 지체구조 전문가가 제시한 국내 및 미국 중동부에서 개발된 스펙트럴 지반진동 감쇠식과 다수의 지진지체구조구 모델을 사용하였다. 인구 밀도가 높은 5개 주요 도시에 대해 확률론적 방법을 이용하여 등지진재해도 스펙트럼을 분석하였다. 0.5, 1.0, 2.0, 5.0, 10.0 Hz 및 PGA에 대해 확률론적 지진재해도 결과를 이용하여 500년, 1,000년 및 2,500년의 3개 재현주기에 대해 등재해도 스펙트럼을 분석하였다. 민감도 분석 결과 각각의 고유 진동수에 해당하는 지반진동 감쇠식이 지진지체구조구 모델에 비하여 지진재해도에 보다 커다란 영향을 주었다. 마지막으로 등재해도 스펙트럼은 공통적으로 10 Hz에서 최대값을 보여 주었고, 원자력 관련 기술기준 또는 기존 연구에서 제시된 등지진재해도 스펙트럼과 수준과 모앙 특성에서 유사성을 보여주었다.

음향 하중에 의한 발사체의 응력해석에 관한 연구 (A Study on the Stress Analysis of Launch Vehicle due to Acoustic Loads)

  • 연정흠;윤성기;장영순;이영무
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.91-98
    • /
    • 2003
  • 발사체의 구조해석적인 측면에서 외부하중에 따른 발사체의 반응을 파악하는 것은 중요한 일이다. 기본적으로 발사체는 응력집중이나 내부 모듈간의 변위 간섭 등이 일어나지 않게 설계되어야한다. 이를 위해서는 외부하중에 관한 연구가 선행되어야 한다. 발사체에 작용하는 외부하중 중 연소 및 배기에 의해 발생하는 음향하중은 통계적 방법으로 다루어야 하는 랜덤 하중이다. 본 연구에서는 발사시 작용하는 음향하중에 대하여 하중 함수를 구성하고, 이를 이용하여 발사체의 하중해석을 수행하였다. 음원 할당 방법으로 음향하중을 추정하여 하중함수를 구성하였고, 이를 발사체의 유한요소 모델에 적용하였다. 응력해석을 이용하여 발사체의 구조 강성을 확인할 수 있었으며, 발사체 각 섹션의 경계면에서의 가속도 파워 스펙트럴 밀도함수를 구할 수 있었다. 이러한 결과를 이용하여 각 섹션의 진동 시험에 필요한 스펙을 도출할 수 있다.