• Title/Summary/Keyword: Design Shear Force

Search Result 585, Processing Time 0.023 seconds

Study of the Soilnail-Slope Design Method Considering Bending Resistance of Soilnail (휨저항을 고려한 쏘일네일보강사면의 해석에 관한 연구)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.331-338
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

Research on a novel shear lead damper: Experiment study and design method

  • Chong, Rong; Wenkai, Tian;Peng, Wang;Qingxuan, Shi
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.865-876
    • /
    • 2022
  • The slit members have lower strength and lower stiffness, which might lead to lower energy dissipation. In order to improve the seismic performance of the slit members, the paper proposes the shear lead damper, which has stable performance and small deformation energy dissipation capacity. Therefore, the shear lead damper can set in the vertical silts of the slit member to transmit the shear force and improve energy dissipation, which is suitable for the slit member. Initially, the symmetrical teeth-shaped lead damper was tested and analyzed. Then the staggered teeth-shaped lead dampers were developed and analyzed, based on the defect analysis and build improvements of the symmetrical specimen. Based on the parameter analysis, the main influence factors of hysteretic performance are the internal teeth, the steel baffles, and the width and length of damper. Finally, the theoretical analysis was presented on the hysteretic curve. And the skeleton curve and hysteresis path were identified. Based on the above theoretical analysis, the design method was proposed, including the damping force, the hysteresis model and the design recommendations.

Shear Design of Trapezoidally Corrugated Steel Webs (제형 파형강판 복부판의 전단 설계)

  • Moon, Jiho;Yi, Jongwon;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.497-505
    • /
    • 2008
  • Corrugated steel webs resist only shear force because of the accordion effects. The shear force in the web can cause three different buckling mode: local, global, and interactive shear buckling modes. The shear behavior of the corrugated steel webs have been investigated by several researchers. However, shear buckling behavior of the corrugated webs are not clearly explained yet. And, it lead the conservative design. This paper presents shear strength of trapezoidally corrugated steel webs. A series of the tests were also conducted to verified proposed shear strength. Firstly, local, global, and interactive shear buckling equations provided by previous researchers were rearranged as a simple form considering the profiles of the existing bridges with corrugated steel webs. And, global and interactive shear buckling coefficient, and shear buckling parameter for corrugated webs were suggested in this study. Inelastic buckling strength can be determined from buckling curves based on the proposed shear buckling parameter. From the test results of this study and those of previous researchers, it can be found that suggested shear strength provides good estimation of those of trapezoidally corrugated steel webs.

Experimental and Analytical Evaluation of Seismic Performance of Shear-Resistance Key (전단저항키 실험 및 내진성능평가)

  • 박종철;강형택;박찬민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.523-528
    • /
    • 2000
  • In multi-span bridges, a shear key is often used to distribute the seismic force to the case, the shear key is sometimes required to be reinforced to withstand the seismic force. To improve the strength of shear key, the strength and failure mode of shear key have to be carefully estimated and the proper reinforcement scheme should be elaborated. The test results show that the strength of shear key is 2.5 times higher than the strength calculated by PCI design handbook. Also the strength of shear key is greatly improved by placing PT bars into shear key. In this study, the analytical method to evaluate the strength of sheat key and the reinforcement scheme are proposed.

  • PDF

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements (수직전단보강이 없는 PS 콘크리트와 현장타설 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Suh, Jung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.533-543
    • /
    • 2014
  • Currently, composite construction of prestressed Precast Concrete (PC) and Cast-In-Place (CIP) concrete with different concrete strengths are frequently used in the modular construction. However, current design codes do not clearly define shear design methods for such composite beams. In this present study, simply supported prestressed PC-CIP composite beams without vertical shear reinforcement or only with horizontal shear reinforcement were tested to evaluate the effect of prestressing on the shear strength and the shear design method for such composite members. The test variables were the area ratio of PC and CIP concretes, prestressing force, shear span-to-depth ratio, and shear reinforcement ratio. The results showed that the shear strength was increased by the increase of prestressing force and prestressed PC area, and the decrease of shear span-to-depth ratio.

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Design of High Performance Reinforced Concrete Pile for Improvement of Seismic Performance (내진성능 향상을 위한 고성능 철근콘크리트 말뚝 설계에 관한 연구)

  • Park, Chan Sik;Cho, Jeong-Rae;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin;Choi, Myung Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • Recent changes in the construction method of piles to minimize noise, along with the development of high-strength reinforcement, have provided an economical high performance RC pile development to compensate for the disadvantages of existing PHC piles. In this study, a methodology for the development of cross - section details of high performance RC piles of various performances is presented by freely applying high strength steel and concrete. This study suggested a technique for calculating bending moments for a given axial force corresponding to the allowable crack widths and this can be used for serviceablity check. In calculating the design shear force, the existing design equation applicable to the rectangular or the I section was modified to be applicable to the hollow circular section. In particular, in the limit state design method, the shear force is calculated in proportion to the axial force, and the procedure for calculating PV diagram is established. Last, the section details are determined through PM diagrams that they have the similar flexural and axial-flexural performances of the PHC pile A, B and C types with a diameter of 500 mm. To facilitate the application of the selected standard sections to the practical tasks, the design PM diagram and design shear forces are proposed in accordance with the strength design method and limit state design method.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

A Comparative Study on Design by Actual Stress and Design by Member Strength in Bolt Connections (철골볼트 접합부 존재응력설계와 부재내력설계의 비교 연구)

  • 이만승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.94-101
    • /
    • 1999
  • There are two methods commonly used in design of splice plate connection of frame structure. The one is Design by Actual Stress which can sufficiently transfer actual force to an adjacent member using rows of bolts. The other is Design by Member Strength which is able to transfer total allowable stress of effective section area to a connected member. In real design, as a matter of convenience, Standard Connection Drawings have used according to Design by Member Strength. But this method underestimate connection force in shear connection where large connection moment occured. In this study, these Design methods are compared by connection moment in shear connections. and the adequate use of them are recommended. Also In order to evaluate more accurately the actual stress of splice plate of flange on moment. connection, a new calculation method of it is recommended.

  • PDF