• Title/Summary/Keyword: Design Shape

Search Result 8,012, Processing Time 0.032 seconds

Optimum design of a pilger mill process for wire forming using CAD/CAE (CAD/CAE를 이용한 세선 성형용 필거밀 공정의 최적설계)

  • 정용수;박훈재;김승수;나경환;이형욱;한창수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.84-88
    • /
    • 2003
  • In this paper, The optimum design of a die shape has been carried out the FEM analysis of a pilger mill process considering various factors. The pilger mill forming process consists of a pair of rotating die which has appropriate surface shape. The important design parameters of the pilger mill are the feed rate and the profile of grooved die. Optimum design procedure was performed in order to investigated effects on the forming load and the deformed shape of material depending on the die radius profile. Profile of the die surface for the optimum design were suggested with the linear, the cosine and the quadratic curve considering a physical forming process. The surface of each die was modeled using the 3DAutoCAD and the analysis of pilger forming process was performed using the LS-DYNA3D. The optimum profile of the die shape for the pilger mill was determined to the quadratic profile. Since the analysis results provide that the model of the quadratic profile gives the lowest forming load and a proper deformed shape.

  • PDF

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

A Study on Design of Barrel Cam Using Relative Velocity (상대속도를 이용한 바렐 캠의 설계에 관한 연구)

  • Shin, Joong-Ho;Kim, Sung-Won;Kang, Dong-Woo;Yoon, Ho-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

Shape Schema representation for Evaluation of Aesthetic value on Shape (형태에 있어서 미학 특성의 평가를 위한 스키마 표현과 방법론의 이론적 고찰)

  • 차명열
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2003
  • In estimating designed architectural buildings, many factors in various design domains such as function, structure, form, environment may be considered and then a building design might be selected or modified as final design. This paper proposed a method to obtain complexity values from two dimensional drawings which are floor plans or elevations. The method has been developed based on information theory, shape pattern representation and cognitive theory. Results of measuring complexity value can make the computer evaluate and select final results produced from automatic design processes by the computer That is to say, aesthetic values based on order and chaos can be measured using complexity values and then some results having superior values can be selected as final result.

  • PDF

Optimal Shape Design of a Container Under Hot Isostatic Pressing by a Finite Element Method (열간등가압소결 공정에서 유한요소법을 이용한 컨테이너 형상의 최적설계)

  • Jeong, Seok-Hwan;Park, Hwan;Jeon, Gyeong-Dal;Kim, Gi-Tae;Hwang, Sang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2211-2219
    • /
    • 2000
  • Near net shape forming of 316L stainless steel powder was investigated under hot isostatic pressing. To simulate densification and deformation of a powder compact in a container during hot isostatic pressing, the constitutive model of Abouaf and co-workers was implemented into a finite element analysis. An optimal design technique based on the design sensitivity was applied to the container design during hot isostatic pressing. The optimal shape of the container was predicted from the desired final shape of a powder compact by iterative calculations. Experimental data of 316L stainless steel powder showed that the optimally designed container allowed precise forming of the desired powder compact during hot isostatic pressing.

Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux (자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계)

  • Lee, Hyung-Woo;Cho, Su-Yeon;Bae, Jae-Nam;Son, Byoung-Ook;Park, Kyoung-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

Design Modification of Airframe Shape for Ultra Light Quad-Rotor Development (초소형 쿼드로터 개발을 위한 기체형상 설계변경)

  • Park, Dae-Jin;Lee, Sangchul;Park, Saeng-Jin;Song, Tae-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An ultra light quad-rotor is utilized in various areas for military and commercial purpose. Especially, the airframe shape is designed with various airframe size, weight and purpose. In this paper, the initial airframe shape of the quad-rotor was designed and manufactured. Flight test was conducted for the quad-rotor. The design modification of airframe shape was conducted to meet design requirement. By changing design, weight of airframe structure was reduced and payloads were placed to the best position. By reinforcing ribs and reducing vehicle's legs, the durability of airframe structure was enhanced.

Shape Optimal Design to Minimize Stress Concentration in the Journal of the Heating Drum for a Hot-Rolling Press (열간압연 프레스용 가열드럼 저어널부의 응력집중 최소화를 위한 형상 최적설계)

  • Kim Won-Jin;Lee Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.137-145
    • /
    • 2005
  • The present research deals with structural analysis and optimal design of the heating drum of a hot-rolling press for medium density fiberboard. Stress concentration in the journal of the heating drum is analyzed by the submodel technique of the finite element method. The fatigue life under operating conditions is analyzed and evaluated by the stress-life theory. Shape optimal design problems, to minimize the maximum stress occurring in the journal, are formulated and shape parameters of the corner fillets of the journal are defined as the design variables. The problems are solved by the numerical optimization method and optimal shapes are found. The optimal designs are shown to be reliable in terms of the maximum stress and the fatigue life.

Design of Step-Stress Accelerated Life Tests for Weibull Distributions with a Nonconstant Shape Parameter

  • Kim, C. M.;D. S. Bai
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.415-433
    • /
    • 1999
  • This paper considers the design of step-stress accelerated life tests for the Weibull distribution with a nonconstant shape parameter under Type I censoring. It is assumed that scale and shape parameters are log-linear functions of (possibly transformed) stress and that a cumulative exposure model holds for the effect of changing stress. The asymptotic variance of the maximum likelihood estimator of a stated quantile at design stress is used as an optimality criterion. The optimum three step-stress plans are presented for selected values of design parameters and the effects of errors in pre- estimates of the design parameters are investigated.

  • PDF