• Title/Summary/Keyword: Design Optimization Tool

Search Result 538, Processing Time 0.031 seconds

Topology optimization of bracing systems in buildings considering the effects of the wind

  • Paulo U. Silva;Rayanne E.L. Pereira;Gustavo Bono
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.473-486
    • /
    • 2023
  • Nowadays, urban centers are increasingly vertical, making architects and engineers look for more efficient tools to analyze the effects of wind on tall buildings. Topology optimization can be used as an efficient tool for the design of bracing systems. Therefore, this work obtained the wind loads that act in the CAARC building, following the Brazilian standard NBR 6123/1988 and using Computational Fluid Dynamics. Four loading situations were considered, using the SIMP and BESO methods to optimize two-dimensional structures. A comparison between the SIMP and BESO methods is presented, showing the differences in the geometry of the solution found by both methods, the percentage variation in the objective function values and the dimensionless processing time. The solutions obtained through the loads obtained by the Brazilian standard are also compared with the numerical solutions obtained by CFD. The results show that the BESO method presented more rigid structures compared to the SIMP method. The bracing structures obtained with the SIMP method always present similar patterns in the distribution and quantity of bars, in contrast to the BESO method where no characteristic topology pattern was observed. It was concluded that even though the structures obtained by the BESO method presented greater stiffness, the SIMP method was less susceptible to the methodology used for the determination of wind loads. Additionally, it was evident the great potential that the combination topology optimization and computational wind engineering have in the design of bracing systems of high functional and aesthetic standards.

Optimal tree location model considering multi-function of tree for outdoor space - considering shading effect, shielding, openness of a tree - (옥외공간에서 수목의 다기능을 고려한 최적의 배식 위치 선정 모델 - 수목의 그림자 효과, 시야차단, 개방성을 고려하여 -)

  • Park, Chae-Yeon;Lee, Dong-Kun;Yoon, Eun-Joo;Mo, Yong-Won;Yoon, June-Ha
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • Open space planners and designers should consider scientific and quantified functions of trees when they have to locate where to plant the tree. However, until now, most planners and designers could not consider them because of lack of tool for considering scientific and quantitative tree functions. This study introduces a tree location supporting tool which focuses on the multi-objective including scientific function using ACO (Ant colony optimization). We choose shading effect (scientific function), shielding, and openness as objectives for test application. The results show that when the user give a high weight to a particular objective, they can obtain the optimal results with high value of that objective. When we allocate higher weight for the shading effect, the tree plans provide larger shadow value. Even when compared with current tree plan, the study result has a larger shading effect plan. This result will reduce incident radiation to the ground and make thermal friendly open space in the summer. If planners and designers utilize this tool and control the objectives, they would get diverse optimal tree plans and it will allow them to make use of the many environmental benefits from trees.

Development of Versatile CAM System (PosCAM) Supporting CNC Shop Floor Operation (CNC Shop Floor 조업지원용 다능형 CAM시스템 (PosCAM) 개발)

  • 서석환;지우석;김성구;홍희동;조정훈;정대혁;김창남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.4
    • /
    • pp.339-349
    • /
    • 1999
  • The punose of this paper is to introduce the comprehensive CAM system (called PosCAM) supporting various function requested from shop floor operators. PosCAM is comported of two subsystems (PosCAM I and PosCAM II) which are designed to make up for the contemporary CAD/CAM systems. PosCAM I is mainly for : a) verifying the part programs written in both custom macros and standard G-codes, b) enhancing machining productivity and quality with built-in cutting conditions and feedrate optimization algorithm. PosCAM II is for : a) efficiently managing the numerous part programs and tool data stored in CNC memory, and b) integratively controlling and monitoring various CNCs from the control center through RS-422 with DNC 2 protocol. The developed systems have been tested via various experiments, and can be Applied for the industrial CNC machine shop as a means for enhancing productivity. The PosCAM system has been implemented and successfully used in the Machine Shop Department of PosCAM since march 1998.

  • PDF

CAE-based DFSS Study for Road Noise Reduction (Road Noise 개선을 위한 CAE 기반 DFSS Study)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

Development of a CAE Tool for P/M Compaction Process and Its Application (금형압축성형공정 해석용 CAE 프로그램 개발 및 적용)

  • Chung Suk-Hwan;Kwon Young-Sam
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.399-411
    • /
    • 2004
  • Crack generation during die compaction and distortion during sintering have been critical problems for the conventional pressing and sintering process. Until now, trial and error approach with engineers' industrial experiences has been only solution to protect the crack generation and distortion. However, with complexity in shape and process it is very difficult to design process conditions without CAE analysis. We developed the exclusive CAE software (PMsolver/Compaction) for die compaction process. The accuracy of PMsolver is verified by comparing the finite element simulation results with experimental results. The simplified procedures to find material properties are proposed and verified with iron based powder and tungsten carbide powder. Based on the accurate simulation result by PMsolver, the optimal process conditions are designed to get uniform density distribution in a powder compact after die compaction process by using a derivative based optimization scheme. In addition, the effect of non-uniform density distribution in a powder compact on distortion during sintering is shown in case of the fabrication of tungsten carbide insert.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes (GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구)

  • Kim, Ill-Soo;Shim, Ji-Yeon;Kim, In-Ju;Kim, Hak-Hyoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

CAE-based DFSS Study for Road Noise Reduction (로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Design of Water Resource Planning System Utilizing Special Features in Mathematical Programming Data Structure (수리계획 모형 자료구조를 활용한 수자원 운영 계획 시스템의 설계)

  • Kim, Jae-Hee;Park, Youngjoon;Kim, Sheung-Kown
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.160-163
    • /
    • 2000
  • Due to the complexities of the real-world system, a water resource management program has to deal with various types of data. It appears that management personnel who has to use the program usually suffers from the technical burdens of handling large amount of data and understanding the optimization theory when they try to interpret the results. By combining the capabilities of database technology and modeling technique with optimization procedure we can develop a reliable decision supporting tool for multi-reservoir operation planning, which yields operating schedule for each dam in a river basin. We introduce two special data handling methodology for the real world application. First, by treating dams, hydro-electric power generating facilities and demand sites as separate database tables, the proposed data handling scheme can be applied to general water resource system in Korea. Second, by assigning variable names using predetermined key words, we can save searching time for identifying the moaning of the variables, so that we can quickly save the results of the optimization run to the database.

  • PDF