• Title/Summary/Keyword: Design Optimization Tool

Search Result 538, Processing Time 0.024 seconds

Development of a Passive Knee Mechanism for Lower Extremity Exoskeleton Robot (근력 지원용 외골격 로봇을 위한 수동형 무릎 관절 메커니즘 개발)

  • Kim, Ho-Jun;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, four-bar linkage mechanism for the knee joint is developed which is used in prosthetics. But unlike the prosthetics, the feature of this mechanism is that the instantaneous center of rotation of the four-bar linkages can be moved behind the ground reaction force vector so that it can be passively supported without any external power. In addition, this mechanism is developed similar to the structure of the human knee joint for eliminating the sense of heterogeneity of the wearer. In order to design the mechanism with these two objectives, optimization design process is done using the PIAnO tool and detailed design is carried out through optimized variable values. The developed mechanism is attached to the robot which can assist the hip and ankle joints. In order to verify the operation of the developed knee mechanism, an insole type sensor was attached to the shoes to compare data values before and after wearing the robot. Result data showed that wearer wearing the exoskeleton robot with the knee mechanism was the same value regardless of whether the heavy tool is loaded or not.

A STUDY ON THE DEVELOPMENT OF AN INTERPRETER FOR MAPPING HUMAN SENSIBILITY AND DESIGN PARAMETERS ON AUTOMOTIVE INTERIOR

  • Kang, Seon-Mo;Paik, Seung-Youl;Park, Peom
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.31-31
    • /
    • 1999
  • In the preliminary design stage of an automotive interior, human sensibility is first analyzed and applied to design parameters for satisfying consumers needs using optimization and engineering judgement. Then designers try to design components that meet these needs using empirical and trial-and-error procedures. This process usually yields poor results because it is difficult to find a feasible design that satisfies the targets by trial-and-error (a feasible design is one that satisfies consumers needs and design constraints). To improve this process, we need tools to link the human sensibility with the design parameters that define the geometry of the components of an automotive interior. A methodology is presented for developing a tool for design guidance of an automotive interior. This tool translates the human sensibility into the design parameters that define the geometry of the components of an automotive interior. This tool, called interpreter, rapidly predicts the human sensibility of a given automotive interior and presents design parameters that meet or exceed given human sensibility to satisfy consumers needs and design constraints. The methodology is demonstrated on the interior design of an actual automotive.

  • PDF

Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform (불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계)

  • Kim, Jihoon;Jin, Sangrok;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.

Design Sensitivity Analysis of Welded Strut Joints on Vehicle Chassis Frame (샤시 프레임에 용접한 스트러트 접합부의 설계 민감도 해석)

  • 김동우;양성모;김형우;배대성
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • Design sensitivity analysis of a vehicle system is an essential tool for design optimization and trade-off studies. Most optimization algorithms require the derivatives of cost and constraint function with respect to design in order to calculate the next improved design. This paper presents an efficient algorithm application for the design sensitivity analysis, using the direct differentiation method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method.

  • PDF

Cutting Characteristics of Ball-end Mill with Different Helix Angle (볼 엔드밀 헬릭스 각에 따른 절삭 특성)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

A Study on Optimization for Static Characteristics Analysis of Gantry-Type Machining Centers (문형머시닝센터의 구조해석을 통한 최적화에 관한 연구)

  • Yoo, Deck-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.122-128
    • /
    • 2015
  • Recently, as the demand for high efficiency, multi-function machine tools has increased, domestic machine tool industries are investing in research and development for Gantry-Type Machining centers. In this thesis, for the purpose of evaluating machining accuracy and designing a machine tool structure, a simplified model of the main frame is suggested. The results show the general characteristics of the optimum design, and the approach is shown as practicable for the preliminary design analysis and improvement of a conceptual design of a Gantry-Type Machining center. This paper's results are expected to improve the static characteristics of Gantry-Type Machine centers. The three-dimensional finite element models proved that the modeling method might be applied to real machine tool structures.

Robust Design for Multiple Quality Attributes in Injection Molded Parts by the TOPSIS and Complex Method (TOPSIS와 콤플렉스법에 의한 사출성형품의 다속성 강건설계)

  • Park, Jong-Cheon;Kim, Gi-Beom;Kim, Gyeong-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.116-123
    • /
    • 2001
  • An automated injection molding design methodology has been developed to optimize multiple quality attributes, which are usually in conflict with each other, in injection molded parts. For the optimization, commercial CAE simulation tools and optimization techniques are integrated into the methodology. To decal with the multiple objective problem the relative closeness computed in TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) is used as a performance measurement index for optimization multiple part defects. To attain robustness against process variation, Taguchi's quadratic loss function is introduced in the TOPSIS. Also, the modified complex method is used as an optimization tool to optimize objective function. The verification of the developed design methodology was carried out on simulation software with an actual model. Applied to production this methodology will be useful to companies in reducing their product development time and enhancing their product quality.

  • PDF

Optimal Vehicle Rear Suspension through Integration of Analysis and Design Process (해석 및 설계 프로세스 통합을 통한 차량 후륜 현가장치 최적화)

  • Kim, Dowon;Park, Dohyun;Lee, Jinhwa;Shin, Sangha;Choi, Jin-Ho;Choi, Byung-Lyul;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.72-81
    • /
    • 2014
  • In this study, we perform the optimization of trailing arm bush in a vehicle rear suspension to improve the ride and handling performance. A design problem was formulated considering 2 objective functions and 7 constraints related to vehicle ride and handling performance. PIAnO, one of the PIDO (Process Integration and Design Optimization) tool, was used to automate analysis procedures and perform a design optimization. In order to assess relation between performances and design variables, we perform the DOE (Design of Experiments). To find the optimal solution, we used Progressive quadratic response surface method (PQRSM), one of the design optimization techniques equipped in PIAnO. As an optimization result, we got an optimal solution and could improve lateral force steer off-center by 43.0% while decreasing brake compliance at wheel center by 8.1%.

Development of Tool Selection System Aiding CAM Works for Injection Mold (사출금형 CAM 작업 지원용 공구 선정 시스템 개발)

  • 양학진;김성근;허영무;양진석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.175-179
    • /
    • 1997
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems. We propose tool selection procedures to aid the decision making process. The system provides available tool size for machining of design model part of injection mold die by analyzing sliced CAD model of die cavity and core. Also, the tool size information is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

Shape Optimization of Structures with a Crack (균열이 있는 구조물의 형상 최적화)

  • 한석영;송시엽;백춘호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.298-303
    • /
    • 2001
  • Most of mechanical failures are caused by repeated loadings and therefore they are strongly related to fatigue. To avoid the failures caused by fatigue, determination of an optimal shape of a structure is one of the very important factors in the initial design stage. Shape optimization for a compact tension specimen in opening mode in fracture mechanics, was accomplished by the linear elastic fracture mechanics and the growth-strain method in this study. Also shape optimization for a cantilever beam in mixed mode was carried out by the same techniques. The linear elastic fracture mechanics was used to estimate stress intensity factors and fatigue lives. And the growth-strain method was used to optimize the shape of the initial shape of the specimens. From the results of the shape optimization, it was found that shapes of two types of specimens and a cantilever beam optimized by the growth-strain method prolong their fatigue lives very much. Therefore, it was verified that the growth-strain method is an appropriate technique for shape optimization of a structure having a crack.

  • PDF