• Title/Summary/Keyword: Design Materials

Search Result 10,597, Processing Time 0.034 seconds

Transparent OLED Lighting Panel Design Using Two-Dimensional OLED Circuit Modeling

  • Han, Jun-Han;Moon, Jaehyun;Cho, Doo-Hee;Shin, Jin-Wook;Joo, Chul Woong;Hwang, Joohyun;Huh, Jin Woo;Chu, Hye Yong;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.559-565
    • /
    • 2013
  • In this work, we develop a simulation method to predict a two-dimensional luminance distribution method using a circuitry simulation. Based on the simulation results, we successfully fabricate large area ($90mm{\times}90mm$) transparent organic light-emitting diode panels with high luminance uniformity.

Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation (반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계)

  • Bang, Je-Sung;Han, Jeong-Woo;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.

Regioselective Acylation on Glycol Chitosan (글라이콜 키토산의 위치선택적 아실화)

  • Lee, Wonbum;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.297-298
    • /
    • 2003
  • Chitin is a natural biopolymer that, with its derivative chitosan, has been represented as a biomaterial with considerable potential in wide ranging medical applications. But there are some limitations in using chitosan as attained, for instance, the problem of water solubility$^1$. In order to use chitosan in various applications (e.g. drug carrier), chemical modifications are often necessary$^2$. (omitted)

  • PDF

A Study of Product Design using Recycled Materials

  • Kim, Kwan-Bae;Chung, Do-Seung;Jang, Jung-Sik
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.70-81
    • /
    • 2020
  • Plastics that we use and simply throw away have a life span of about 500 years and barely decompose. The practice of producing and using common plastics needs to be challenged. Until now, they have been useful in the industrial structure of mass production, but it can be said that there is a lack of research into new materials to introduce and apply in terms of material recycling. As a result of this, we have come to the uncomfortable realization of the fact that we cannot incinerate or reuse these precious resources indiscriminately. No matter how well-designed a product is, it has a competitive advantage if production and consumption activities, waste, collection, sorting and treatment are considered in terms of a continuous cycle, and in this respect, Extended Producer Responsibility (EPR) can help. We are implementing the EPR system, and active industrialization in the field of recycling is required, which is also a challenge for producers to participate actively in recycling and seek to save and recycle resources in design and manufacturing. Against this backdrop, We would like to examine the possibilities, through various studies and developments on product design of recyclable materials, which is being conducted mainly in Europe. In particular, we would like to examine the methods, and value of solving environmental problems and the active efforts to achieve this in the design world, and in particular the case of product design using recycled plastics.

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

A Study on the Design Expression of Architectural Material Matter as Epidermal Concept (표피로서 건축 재료의 디자인 표현에 관한 연구)

  • Kim, So-Hee
    • Korean Institute of Interior Design Journal
    • /
    • no.34
    • /
    • pp.29-36
    • /
    • 2002
  • Skin Architecture', which has been an important topic of architectural discourse in the recent past, is playing an even greater role in the design expression of architectural materials nowadays. The purpose of this study is to define the epidermal conception about material matter and to discover the various modes of visual effect in the use of architectural materials.Epidermal thought is expressed in different forms, ranging from a simple covering made up of materials of all kinds , removable or technological wrappings. Analyzing the recent experiments from the works of Bernard chumi, Herzog & de Meuron, Peter Zumthor, Gigon & Guyer , it can be argued that the skin is a good emotional approach in the design expression of architectural material matter as epidermal concept since the 1980's.