DOI QR코드

DOI QR Code

Transparent OLED Lighting Panel Design Using Two-Dimensional OLED Circuit Modeling

  • Han, Jun-Han (Components & Materials Research Laboratory, ETRI) ;
  • Moon, Jaehyun (Components & Materials Research Laboratory, ETRI) ;
  • Cho, Doo-Hee (Components & Materials Research Laboratory, ETRI) ;
  • Shin, Jin-Wook (Components & Materials Research Laboratory, ETRI) ;
  • Joo, Chul Woong (Components & Materials Research Laboratory, ETRI) ;
  • Hwang, Joohyun (Components & Materials Research Laboratory, ETRI) ;
  • Huh, Jin Woo (Components & Materials Research Laboratory, ETRI) ;
  • Chu, Hye Yong (Components & Materials Research Laboratory, ETRI) ;
  • Lee, Jeong-Ik (Components & Materials Research Laboratory, ETRI)
  • Received : 2012.11.30
  • Accepted : 2013.06.28
  • Published : 2013.08.01

Abstract

In this work, we develop a simulation method to predict a two-dimensional luminance distribution method using a circuitry simulation. Based on the simulation results, we successfully fabricate large area ($90mm{\times}90mm$) transparent organic light-emitting diode panels with high luminance uniformity.

Keywords

References

  1. S.Y. Ryu et al., "Transparent Organic Light-Emitting Diodes Consisting of a Metal Oxide Multilayer Cathode," Appl. Phys. Lett. vol. 92, issue 2, Jan. 2008, pp. 023306-1-023306-3. https://doi.org/10.1063/1.2835044
  2. R.B. Pode et al., "Transparent Conducting Metal Electrode for Top Emission Organic Light-Emitting Devices: Ca-Ag Double Layer," Appl. Phys. Lett. vol. 84, issue 23, May 2004, pp. 4614-1-4614-3. https://doi.org/10.1063/1.1756674
  3. J. Lee et al., "Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes," ETRI J., vol. 33, no. 1, Feb. 2011, pp. 32-38. https://doi.org/10.4218/etrij.11.0110.0172
  4. J.-I. Lee et al., "Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials," ETRI J., vol. 34, no. 5, Oct. 2012, pp. 690-695. https://doi.org/10.4218/etrij.12.0112.0014
  5. J.-H. Han et al., "A New Method for Monitoring an OLED Panel for Lighting by Sensing the Waveguided Light," J. Info. Disp., vol. 13, issue 3, Sept. 2012, pp. 119-123. https://doi.org/10.1080/15980316.2012.711260
  6. J.W. Huh et al., "The Optical Effects of Capping Layers on the Performance of Transparent Organic Light-Emitting Diodes," IEEE Photonics J., vol. 4, issue 1, Feb. 2012, pp. 39-47. https://doi.org/10.1109/JPHOT.2011.2176478
  7. J. Lee et al., "Systematic Investigation of Transparent Organic Light-Emitting Diodes Depending on Top Metal Electrode Thickness," Org. Electron., vol. 12, no. 8, Aug. 2011, pp. 1383-1388. https://doi.org/10.1016/j.orgel.2011.05.006
  8. T. Winkler et al., "Realization of Ultrathin Silver Layers in Highly Conductive and Transparent Zinc Tin Oxide/Silver/Zinc Tin Oxide Multilayer Electrodes Deposited at Room Temperature for Transparent Organic Devices," Thin Solid Film, vol. 520, issue 14, May 2012, pp. 4669-4673. https://doi.org/10.1016/j.tsf.2011.10.122
  9. H. Cho, J.-M. Choi, and S. Yoo, "Highly Transparent Organic Light-Emitting Diodes with a Metallic Top Electrode: The Dual Role of a Cs2CO3 Layer," Opt. Exp., vol. 19, no. 2, Jan. 2011, pp. 1113-1121. https://doi.org/10.1364/OE.19.001113
  10. C. Piliego et al., "Analysis and Control of the Active Area Scaling Effect on White Organic Light-Emitting Diodes towards Lighting Applications," Appl. Phys. Lett., vol. 89, issue 10, Sept. 2006, pp. 103514-1-103514-3. https://doi.org/10.1063/1.2347698
  11. K. Neyts et al., "Conductor Grid Optimization for Luminance Loss Reduction in Organic Light-Emitting Diodes," J. Appl. Phys., vol. 103, issue 9, May 2008, pp. 093113-1-093113-5. https://doi.org/10.1063/1.2907960
  12. J.-H. Han et al., "A New 2-Dimensional OLED Circuit Modeling for Obtaining Uniform Brightness in Large Area OLED Lighting Panels," Proc. Int. Disp. Workshops, vol. 19, 2012, pp. 1829-1832.
  13. K. Neyts et al., "Inhomogeneous Luminance in Organic Light Emitting Diodes Related to Electrode Resistivity," J. Appl. Phys., vol. 100, issue 11, Dec. 2006, pp. 114513-1-114513-4. https://doi.org/10.1063/1.2390552

Cited by

  1. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs. vol.39, pp.12, 2013, https://doi.org/10.1364/ol.39.003527
  2. Colored semi-transparent organic light-emitting diodes vol.15, pp.4, 2013, https://doi.org/10.1080/15980316.2014.951414
  3. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film vol.106, pp.21, 2013, https://doi.org/10.1063/1.4921786
  4. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes vol.54, pp.2, 2013, https://doi.org/10.7567/jjap.54.02bc04
  5. Area-selective external light extraction for metal bus equipped large area transparent organic light-emitting diodes vol.24, pp.5, 2013, https://doi.org/10.1364/oe.24.005356
  6. Grid Optimization of Large-Area OLED Lighting Panel Electrodes vol.12, pp.6, 2016, https://doi.org/10.1109/jdt.2015.2511023
  7. 31‐1: Novel Laminated OLEDs Using a Non‐Metal Transparent Top Electrode with an Embedded Metal Mesh vol.47, pp.1, 2013, https://doi.org/10.1002/sdtp.10695
  8. Toward See‐Through Optoelectronics: Transparent Light‐Emitting Diodes and Solar Cells vol.8, pp.22, 2013, https://doi.org/10.1002/adom.202001122
  9. 14.4: Diffraction Simulation of Camera Under Display vol.52, pp.1, 2021, https://doi.org/10.1002/sdtp.14388