• Title/Summary/Keyword: Design Durability

Search Result 1,341, Processing Time 0.025 seconds

Vibration Analysis and Durability Evaluation of a Sign Frame on a Bridge (교량부속구조물에 대한 진동해석과 피로내구성평가)

  • Lee, Sang-Hun;Endo, Takao;Ishikawa, Masami;Han, Yeon-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.317-320
    • /
    • 2008
  • Between traffic-induced vibration of a bridge and fatigue damage of its attached structures are very closely related. But any evaluation and design method considering the fatigue damage is not established yet. As an experimental method of evaluation of the fatigue durability, a method based on cumulative damage using a stress range histogram has been often used. However, to use the method, the fatigue durability of unmeasured points could not be evaluated. Then, in this paper, dynamic analysis of a sign frame on a bridge is carried out based on the vibration data of the bridge. And model optimization was performed for good agreement between measured responses and computed responses. As a result, we could get stress range histograms and calculate fatigue durability of unmeasured points.

  • PDF

A Study on Durability of Under Bar at Car through Structural and Fatigue Analysis (자동차 언더바의 구조 및 피로해석을 통한 내구성 연구)

  • Han, Mu Shick;JO, Jae-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.44-50
    • /
    • 2015
  • This study investigated the durability of the under bar of a car through structural and fatigue analysis. Model 1 had the lowest value among three kinds of models. In the case of the maximum equivalent stress and displacement at structural analysis, model 1 showed the highest durability. Also, models 3 and 2 showed structural durability in order of this value. In the case of fatigue analysis, the maximum fatigue lives of the three models were equal to $2{\times}10^7$cycles. However, model 1 showed the highest value among the three models, as the minimum fatigue life of model 1 becames 92.56 cycles. Also models 3 and 2 showed fatigue durability in order of this value. The maximum possibility of fatigue damage for models1,2,and 3 became 30%. If the results of this study are applied to change the design shape of the under bar of cars, the ride comfort for automobile passengers and car durability can be improved.

Development of Modeling Support System for Lower Arm in Automobile Suspension Module (자동차 서스펜션 로워암의 모델링 보조시스템 개발)

  • Lee T.H.;Shin S.Y.;Suh C.H.;Kwon T.W.;Han S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2006
  • In this study, the modeling support system was developed which can make easy and fast FE-modeling and verify the results of static and durability analysis for the lower arm, one of the important parts in automobile suspension module. It took into account of the whole complicated design processes verifying the durability coefficients evaluated by fatigue analysis, which should be used to satisfy a design criteria. To guide the FE-modeling the drive page was constructed by using HTML and XML, which was based on expert's know-hows. It is able to integrate the processes to design the lower arm in practice, so that the standardization of its FE-Modeling is achieved, consequently. The 3 dimensional CAD's geometrical data were changed automatically into pre-defined shell elements under the concept of mesh-offset technique, and then welding elements were treated to connect between target and basic surfaces constructed by the shell elements. This system has also a user interface to control boundary and load ing conditions applied in performing of the static and durability analysis, in which many load cases can be applied simply with the MPCs driven by just few mouse clicks. These were implemented on the platform of MSC.Patran and utilized ANSYS, MSC.Nastran and MSC.Fatigue as the solver of the analysis performed. The developed system brings not only significant decreasing of man-hours required in FE-modeling process, but also obtaining of satisfied qualities in analyzed results. It will be integrated in a part of virtual prototyping module of the developing e-engineering framework.

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

A Convergence Study through Durability Analysis due to the Number of Automotive Seat Frame Supports (자동차 시트 프레임 지지대 개수에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.155-160
    • /
    • 2018
  • Automotive seat is a part to supply the convenience and safety of driver at driving. Recently, the seat has the role to protect driver from the outside impact or vibration and give the convenience except such a usage as chair. The design on structural function of the seat frame is important like the impact safety and durability. In this study, the seat is designed by adding one hollow rod to the part of seat back frame in order to enhance the structural safety and durability. This study was carried out by using CATIA and ANSYS as the design and analysis programs. As this study result through the structural and vibrational analyses, model 4 was seen to have the durability more superior than the other models. By utilizing this result, it is thought to be the useful material at designing the automotive seat frame with durability. It is possible to be grafted onto the convergence technique at the automotive seat frame and show the esthetic sense.

A Study on Resonance Durability Analysis of Vehicle Suspension System (차량 현가 시스템의 공진내구해석에 대한 연구)

  • 이상범;한우섭;임홍재
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.512-518
    • /
    • 2003
  • In this paper, resonance durability analysis is performed for the fatigue life assessment considering vibration effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load history, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the resonance durability analysis technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

Theoretical Approach to Calculate Surface Chloride Content $C_s$ of Submerged Concrete under Sea Water Laden Environment

  • Yoon, In-Seok;Ye, Guang;Copuroglu, Oguzhan;Shalangen, Erik;Breugel, Klaas van
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.197-200
    • /
    • 2006
  • The ingress of chloride ions plays a crucial role for service life design of reinforced concrete structures. In view of durability design of concrete structures under marine environment, one of the most essential parameters is the surface chloride content of concrete. However, on the basis of the results of in-situ investigation, this value has been determining in the numerous studies on the durability design of concrete structures. Hence, it is necessary to confirm the range of the surface chloride content in order to establish a unified durability design system of concrete. This study suggests a rational and practical way to calculate the maximum surface chloride content of submerged concrete under marine environment. This approach starts with the calculation of the amount of chloride ingredients in normal sea water. The capillary pore structure is modeled by numerical simulation model HYMOSTRUC and it is assumed to be completely saturated by the salt ingredients of sea water. In order to validate this approach, the total chloride content of the mortar and concrete slim disc specimen was measured after the immersion into the artificial sea water solution. Additionally, the theoretical, the experimental and in-situ investigation results of other researchers are compiled and analyzed. Based on this approach, it will follow to calculate the maximum surface chloride content of concrete at tidal zone, where the environment can be considered as a condition of dry-wetting cycles.

  • PDF

The Optimization of Rear Suspension Using Hydroforming (하이드로포밍을 이용한 후륜 현가장치 최적설계)

  • Oh, J.H.;Choi, H.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.481-485
    • /
    • 2008
  • The subframe type rear suspension consisting of a side member and a front/rear cross member is widely used in a medium car and full car. In the small car case, the beam of tubular type without independent suspension system is used to reduce manufacturing cost. In this study, a subframe type rear suspension by hydroforming has been developed. In designing suspension, a driving stability and durability should be considered as an important factor for the performance improvement, respectively. Thus, we focus on increasing the stiffness of suspension and decreasing the maximum stress affecting a durability cycle life. Several optimization design techniques such as shape, size, and topology optimization are implemented to meet these requirements. The shapes of rear suspension obtained from optimization are formed by using hydroforming process. Through commercial software based on the finite element, the superiority of this design method is demonstrated.