• Title/Summary/Keyword: Design Domain Reduction

Search Result 95, Processing Time 0.024 seconds

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Strain monitoring of composite bogie side-frame using distributed optical fiber sensor (분포형 광섬유 센서를 이용한 복합소재 대차 사이드프레임의 변형 모니터링)

  • Yoon, Hyuk-Jin;Kim, Jung-Seok;Song, Kwang-Yong;Kim, Seung-Chul;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.627-632
    • /
    • 2010
  • Recently the research for lightening the railway vehicle is actively made according to the demand of the environment-friendly technology development contributing to the energy cost reduction and the green growth. The railway vehicle lightweight research is expanded to the load-supporting first structure from the secondary structure which doesn't support the load. After the composite car body development used in the Korean tilting train is completed, the composite bogie frame development in which the weight reduction efficiency is large is progressed. In this paper, distributed strain was monitored when the train load was added to the central part of the composite bogie side-frame. By using the optical fiber which was attached to the lower part of the side-frame and the developed Brillouin correlation domain analysis (BOCDA) system, the strain distribution could be measured with 3cm step over 3m section. This strain distribution was compared with the design value by the FE analysis when the load of 14ton and 18ton added. This experiment can verify the manufactured composite bogie side-frame.

  • PDF

Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems (Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법)

  • Jung, Hong-Ju;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

The Aircraft-level Simulation Environment for Functional Verification of the Air Data Computer (대기자료 컴퓨터 (Air Data Computer) 기능검증을 위한 항공기 수준의 시뮬레이션 환경)

  • Lee, Dong-Woo;Lee, Jae-Yong;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In recent years, model-based design techniques have been used as a way to support cost reduction and safety certification in the development of avionics systems. In order to support performance analysis and safety analysis of aircraft and avionics equipment (item) using model based design, we developed a multi-domain simulation environment that inter-works with heterogeneous simulators. We present a multi-domain simulation environment that can verify air data computers and integrated multi-function probes at the aircraft level. The model was developed by Simulink and the flight simulator X-Plane 10 was used to verify the model at the aircraft level. Avionics model functions were tested at the aircraft level and the air data errors of the model and flight simulator were measured within 0.1%.

Design and Implementation of Crosstalk Canceller Using Warped Common Acoustical Poles (주파수 워핑된 공통 극점을 이용한 음향 간섭제거기의 설계 및 구현)

  • Jeong, Jae-Woong;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.339-346
    • /
    • 2010
  • For the implementation of the crosstalk canceller, the filters with large length are needed, which is because that the length of the filters greatly depends on the length of the head-related impulse responses. In order to reduce the length of the crosstalk cancellation filters, many methods such as frequency warping, common acoustical pole and zero (CAPZ) modeling have been researched. In this paper, we propose a new method combining these two methods. To accomplish this, we design the filters using the CAPZ modeling on the warped domain, and then, we implement the filters using the poles and zeros de-warped to the linear domain. The proposed method provides improved channel separation performance through the frequency warping and significant reduction of the complexity through the CAPZ modeling. These are confirmed through various computer simulations.

Design of a Fourth-Order Sigma-Delta Modulator Using Direct Feedback Method (직접 궤환 방식의 모델링을 이용한 4차 시그마-델타 변환기의 설계)

  • Lee, Bum-Ha;Choi, Pyung;Choi, Jun-Rim
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.39-47
    • /
    • 1998
  • A fourth-order $\Sigma$-$\Delta$ modulator is designed and implemented in 0.6 $\mu\textrm{m}$ CMOS technology. The modulator is verified by introducing nonlinear factors such as DC gain and slew rate in system model that determines the transfer function in S-domain and in time-domain. Dynamic range is more than 110 dB and the peak SM is 102.6 dB at a clock rate of 2.8224 MHz for voiceband signal. The structure of a ∑-$\Delta$ modulator is a modified fourth-order ∑-$\Delta$ modulator using direct feedback loop method, which improves performance and consumes less power. The transmission zero for noise is located in the first-second integrator loop, which reduces entire size of capacitors, reduces the active area of the chip, improves the performance, and reduces power dissipation. The system is stable because the output variation with respect to unit time is small compared with that of the third integrator. It is easy to implement because the size of the capacitor in the first integrator, and the size of the third integrator is small because we use the noise reduction technique. This paper represents a new design method by modeling that conceptually decides transfer function in S-domain and in Z-domain, determines the cutoff frequency of signal, maximizes signal power in each integrator, and decides optimal transmission-zero frequency for noise. The active area of the prototype chip is 5.25$\textrm{mm}^2$, and it dissipates 10 mW of power from a 5V supply.

  • PDF

Effect of the incoherent earthquake motion on responses of seismically isolated nuclear power plant structure

  • Ahmed, Kaiser;Kim, Dookie;Lee, Sang H.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • Base-isolated nuclear power plant (BI-NPP) structures are founded on expanded basemat as a flexible floating nuclear island, are still lacking the recommendation of the consideration of incoherent motion effect. The effect of incoherent earthquake motion on the seismic response of BI-NPP structure has been investigated herein. The incoherency of the ground motions is applied by using an isotropic frequency-dependent spatial correlation function to perform the conditional simulation of the reference design spectrum compatible ground motion in time domain. Time history analysis of two structural models with 486 and 5 equivalent lead plug rubber bearing (LRB) base-isolators have been done under uniform excitation and multiple point excitation. two different cases have been considered: 1) Incoherent motion generated for soft soil and 2) Incoherent motion generated for hard rock soil. The results show that the incoherent motions reduce acceleration and the lateral displacement responses and the reduction is noticeable at soft soil site and higher frequencies.

A Study on the Size and the Shape Optimization of Cross Beam for Electric Vehicle using GENESIS 7.0 (GENESIS 7.0을 이용한 전동차용 크로스 빔의 치수와 형상 최적화에 관한 연구)

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.129-136
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and demand auxiliary equipment such as air pipe, electric wire pipe and gas pipe. Especially, lightweight vehicle body is salutary to save operating costs and fuel consumption. Cross beam supports the weight of passenger and electrical equipments and account for the most of weight of vehicle body. Therefore this study performs the size and the shape optimization of crossbeam for electric vehicle using GENESIS 7.0 and presents the effect of mass reduction and the shape of hole in cross beam.

High-Frequency Modeling and the Influence of Decoupling Capacitors in High-Speed Digital Circuits (고속 고밀도 디지털 회로에서 사용되는 디커플링 캐패시터의 고주파 모델링과 영향)

  • 손경주;김진양;이해영;최철승;변정건
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.23-27
    • /
    • 2000
  • Simultaneous Switching Noise (SSN) propagated through parallel power and ground planes in high-speed multilayer printed circuit boards (PCBs) causes malfunction of both digital and analog circuits. To reduce SSN, decoupling capacitors are generally used in the PCBs. In this paper, we improve the equivalent circuit model of decoupling capacitor in high-frequency range to analyze the effect of SSN reduction accurately. The analysis is performed by the microwave and RF design system (MDS) method and the finite difference time domain (FDTD) method. We compared the results by the ideal capacitor model with those by the proposed model.

  • PDF

Estimation Method for Power Distribution Network of Impedance Characteristic on Printed Circuit Board (PCB상의 전력 배분망 설계를 위한 임피던스 계산법)

  • Cho Tae-ho;Park Joong-Ho;Baek Jong-Humn;Kim Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • This paper proposes a new methodology for the estimation of impedance characteristics, which is one of the important issue in the power distribution network design of printed circuit boards. The modeling process of the proposed method divides the power distribution network into uniform segment, and each segment is modeled by distributed RLC transmission lines. Then, for the efficient computation of impedance characteristics in frequency domain. the proposed method uses a model-order reduction method.