• Title/Summary/Keyword: Design & Construction management

Search Result 2,189, Processing Time 0.028 seconds

A Fundamental Study on System Development for Managing Information Exchange between Participants in Design Phase (설계사무소와 엔지니어링업체간 지속적 정보교환관리 시스템 구축을 위한 기초연구)

  • Jun, Joon-Ki;Yi, June-Seong;Yoo, Seung-Yeun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.322-326
    • /
    • 2007
  • Recently, as construction projects are getting bigger and more complex, the number of participants has been tremendously increased. According to the current trend, the necessity of collaboration design management controlling communication and information exchange among many participants has came up. So this study considers the roles and tasks of each participant and informations that occur in each design stage, and looks into the present status of collaboration in design management of domestic design companies. Finally, the function of collaboration system is drove. It supports tasks of design participants, such as input design outcome, decision making among concerned people and solution of design change and interference.

  • PDF

Design Development Management in the Design-Build Project by Cast-Study (사례 분석을 통한 턴키 프로젝트 실시설계 업무 관리방안)

  • Lee Hwang-Ku;Kim Young-Jae;Kim Kyung-Rai;Park Chan-Sik;Shin Dong-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.3 s.15
    • /
    • pp.128-136
    • /
    • 2003
  • The contractors which execute the design-build project have difficulties in design management and contract administration in the pre-construction phase because they have managed construction projects focused on only construction phase so far. Moreover, they have to manage the design development stage without any contingency following-up various design revisions from the design reviews of outside experts. Therefore, the design management in the design development stage is a critical success facto. of the design-build project. The objective of this study is to structure the problems in the management skill for design development phase in the domestic design-build projects and to suggest a design development management method to settle the problems. To achieve these objectives, this study 1) analyzes the prior studies about the design-build procurement methods, 2) designs and performs a case study to embody the problems of the domestic design-build projects, and 3) proposes a method of design development management by analyzing the results of case study and interviewing experts.

DEVELOPMENT OF DESIGN FOR AUTOMATION (DFA) BASED ON QUALITY FUNCTION DEPLOYMENT

  • Tae-Hoon Kim;Yoonseok Shin;Wi Sung Yoo;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1075-1080
    • /
    • 2009
  • Recently, the building construction industry has been forced to cope with lack of skilled labor. A robot-based construction automation system should help overcome crucial troubles which may be caused by this phenomenon. In particular, it is vital to propose design for automation (DFA). Quality function deployment (QFD) is applied a systematic aid in determining the design reflecting customer's needs. This study employs the QFD approach to plan the component designs of an effective automation process, and presents the development process of DFA with an illustrative project. As a result, the study identifies the developers' design requirements for automated construction and weights them by their importance indices.

  • PDF

COST ANALYSIS OF STRUCTURAL PLAN FOR REDUCING FRAMEWORK CONSTRUCTION DURATION OF REINFORCED CONCRETE RESIDENTIAL BUILDINGS

  • Seon-Woo Joo;Moonseo Park;Hyun-Soo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.493-498
    • /
    • 2009
  • Recently, the number of complex construction projects, such as high-density development and long-span mega structure construction, has been increasing globally. Therefore, the construction duration has become an even more important factor for success. Nevertheless, in domestic residential construction projects, it usually takes more time than twice as much as North American cases. The long construction duration causes a number of problems, for example growth of financial costs, fall in productivity, and weakness of competitiveness. If the framework construction duration can be shortened to 3 ~ 4 days, then it is also expected to complete the finish work of building in shorter duration, be led to reduce the entire construction duration, and eventually to save a great deal of indirect costs. For shortening the construction duration, previous researches pointed out that the development of simplified plan design should precedes. But, in reality, lack of experience of new design and innovative techniques tends to be the obstacle to wide adoption of the simplified plan design in construction fields. In this paper, a simplified structural plan design is proposed, and the construction cost is quantitatively compared between when traditional construction technique is applied to the traditional plan and when the duration-shortening key technique is applied to the developed plan.

  • PDF

A PROPOSAL OF CONSTRUCTABILITY REVIEW IN THE BASIC DESIGN STEP FOR DESIGN-BUILD PROJECTS

  • Sung-Wook Choi;Young-Woong Song;Yoon-Ki Choi;Dong-Woo Shin;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1150-1153
    • /
    • 2005
  • The orders of Design-Build Delivery System (DBDS) in a large and public construction project have been increasing. Single Source Responsibility (SSR) for design and construction, which contributes to quality improvement of design and construction, has been performed. The DBDS performs SSR for design and construction, but, it has not maximized effect because of the dissatisfied alternative analysis procedures which are based on constructability evaluation and the information system in the design step. In this research, Constructability Evaluation Factors (CEFs) that must be evaluated, investigated, and reflected in the basic design step for design-build projects. The CEF proposed and the business process of each conductor has been systematized. To propose constructability evaluation factors, first classify drawing information by the constructability evaluation sphere. CEFs must be proposed to evaluate factors according to interference among work items. Second, applicable CEFs must be classified by preference ranking and weight. Third, the values of constructability factors in accordance with building elements and work items, need to be calculated. Finally, the CEFs proposal will support rational decision making, design cost reduction, and quality improvement through the values for constructability of building elements and work items.

  • PDF

Effectiveness of Fatal Fall Accident Prevention through Design for Safety in Construction Industry (건설공사의 추락재해예방을 위한 설계안전기법의 효과성 분석)

  • Kyunghwan Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • Construction industry is considered as one of the most high-risk industries for work-related injuries and fatalities, accounting for more than half of fatalities in Korea. Advanced countries have recognized the critical role of designers in preventing construction accidents and have established regulations on design for safety. In line with this, the Korean government have also implemented regulations that require owners and designers to review the safety of design outcomes. However, it has been observed that designers face challenges in identifying hazards and integrating design solutions at the design stage mainly due to their shortage of required knowledge and skills. This study aimed to examine design solutions that can be applied to prevent fall accidents in the construction industry, and to establish a relationship between these solutions and fatal fall accidents occurred over the past three years in Korea. This study also analyzed the relationships of four variables (construction type, cost, work type, and fall location) with design solutions. The results indicated that all four variables have significant relationships with design solutions, with fall location showing the strongest relationship. The design solutions and their relationships with fatal fall accidents identified in this study can be utilized in identifying hazard and integrating design solutions to ensure design for safety.

DEVELOPMENT OF STRATEGIES FOR APPLICATION OF 4D MODELING IN CONSTRUCTION MANAGEMENT

  • Yang-Taek Kim;Chang-Taek Hyun ;Kyo-Jin Koo
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1181-1186
    • /
    • 2005
  • In many construction projects, progress and efficiency are hampered by poor communication of discipline-specific models. For example, architects use 2D or 3D CAD models and builders use CPM diagrams, Gantt charts, and spreadsheets to show their view of the project. Nowadays, advanced computer visualization tools, 4D CAD or VR, can show these disparate models to understand cross-disciplinary impacts of design and construction decisions. In Korea, several leading companies have tried to apply these tools to their pilot projects from the design phase to the maintenance phase. These companies have expected that more project stakeholders could understand a construction schedule more quickly and completely with 4D visualization than with the traditional construction management tools. However, modeling of the 4D CAD or VR can be quite time-consuming and expensive to generate manually and has therefore limited the spread and use of these models. In order to adopt widely those models in construction industry, the areas that those tools could support to take large benefits in diverse functional areas of construction management need to be analyzed. In this study, researchers analyze the usefulness and limitations of the 4D models and VR in the construction industry, develop the strategy of application priority, and improve the 4D modeling method.

  • PDF

Development and Application of Integrated Management System in Nuclear Power Plant Construction Project

  • Lee, Sang Hyun;Byon, Su Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.700-701
    • /
    • 2015
  • Nuclear power plant construction project can be called essential to establish a systematic project management system compared to other construction projects, taking into account the size and complexity and safety. To develop into a project management system for the Korea situation with the ongoing construction of the nuclear power plant was directed to promote nuclear power project management. In this paper, we introduce a comprehensive project management system for nuclear power projects. Currently considering the nuclear life cycle design, construction, and was developed by considering the flow of information to operate, and test each step linkage. The systems in English were developed to meet owner's requirements for advancing into overseas projects. Another point is that the systems were developed by management module, so that functions of each area can be selectively applied. It is expected that the system will establish itself as one that can be used for the entire lifecycle of nuclear power plants through gradual and systematic establishment of necessary data.

  • PDF

MECHANICAL DESIGN APPROACH FOR THE VIRTUAL MOCK-UP STUDY OF BUILDING ENVELOPE DESIGN AND FABRICATION

  • Minjung M.;Yongcheol L.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.158-162
    • /
    • 2013
  • Building envelope systems with growing complexity in geometry and performance criteria demand adapted workflow processes toward the efficient integration of their design and fabrication. To facilitate integration of the workflow process, this study analyzes relationships among teams who share digital models and exchange information that help project participants identify areas of improvement in task allocation and exchanges among various actors, systems, and activities. In addition, major gaps identified in knowledge transfer, project tracking, and design integration during the performance evaluation stages, emphasize the need for a more comprehensive approach to integrating the design, the fabrication, and the construction parameters of building envelope systems. To evaluate the effectiveness of streamlining interactions of design parameters with fabrication constraints and constructability assessments, this paper examines a mechanical design approach as it applies to various project scenarios to develop a mechanical solution for streamlining building envelope design and construction workflow.

  • PDF

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF