• Title/Summary/Keyword: Descriptors

Search Result 506, Processing Time 0.02 seconds

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

Evaluation of Feature Extraction and Matching Algorithms for the use of Mobile Application (모바일 애플리케이션을 위한 특징점 검출 연산자의 비교 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Mobile devices like smartphones and tablets are becoming increasingly capable in terms of processing power. Although they are already used in computer vision, no comparable measurement experiments of the popular feature extraction algorithm have been made yet. That is, local feature descriptors are widely used in many computer vision applications, and recently various methods have been proposed. While there are many evaluations have focused on various aspects of local features, matching accuracy, however there are no comparisons considering on speed trade-offs of recent descriptors such as ORB, FAST and BRISK. In this paper, we try to provide a performance evaluation of feature descriptors, and compare their matching precision and speed in KD-Tree setup with efficient computation of Hamming distance. The experimental results show that the recently proposed real valued descriptors such as ORB and FAST outperform state-of-the-art descriptors such SIFT and SURF in both, speed-up efficiency and precision/recall.

Estimation of Biological Action of Dioxins by Some Geometric Descriptors (기하학적 변수에 의한 다이옥신의 독성 예측)

  • Hwang, Inchul
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 1999
  • To effectively predict the lipophilicity, the aryl hydrocarbon receptor (AhR) affinity, and TEF (Toxic equivalency factor) of dioxins by geometrical descriptors, the multiple linear regression methods with the forward selection and backward elimination were employed with statistical validity. The lipophilicity, the Ah receptor binding affinity, and the toxic equivalency factor of dioxins could be predicted using some geometrical descriptors.

  • PDF

Recent Advances in Feature Detectors and Descriptors: A Survey

  • Lee, Haeseong;Jeon, Semi;Yoon, Inhye;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.153-163
    • /
    • 2016
  • Local feature extraction methods for images and videos are widely applied in the fields of image understanding and computer vision. However, robust features are detected differently when using the latest feature detectors and descriptors because of diverse image environments. This paper analyzes various feature extraction methods by summarizing algorithms, specifying properties, and comparing performance. We analyze eight feature extraction methods. The performance of feature extraction in various image environments is compared and evaluated. As a result, the feature detectors and descriptors can be used adaptively for image sequences captured under various image environments. Also, the evaluation of feature detectors and descriptors can be applied to driving assistance systems, closed circuit televisions (CCTVs), robot vision, etc.

Adaptive Bayesian Object Tracking with Histograms of Dense Local Image Descriptors

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.

Screening of QSAR Descriptors for Genotoxicily Prediction of Drinking Water Disinfection Byproducts (DBPs), Chlorinated Aliphatic Compounds-The Role of Thermodynamic factors (음용수의 염소살균부산물(DBPs)인 염화지방족화합물의 QSAR 독성예측치에 대한 열역학적 분자표현자의 역할(II))

  • 김재현;조진남
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.118-121
    • /
    • 2001
  • The predictive screening of various molecular descriptors for predicting carcinogenic, mutagenic, teratogenic and alkylation activity of chlorinated disinfection byproducts (DBPs) has been investigated for the application of quantitative structure-activity relationships (QSAR). The toxicity index for 29 compounds were computed by the PASS program and active values were employed in this study. Studies show that different descriptors account for the model equation of each genotoxic endpoint and that thermodynamic descriptors significantly played a major role on prediction of endpoints of chlorinated aliphatic compounds.

  • PDF

Linear Correlation Equation for Retention Factor of Nucleic Acid Using QSPR

  • Zheng, Jinzhu;Han, Soon-Koo;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.629-633
    • /
    • 2005
  • In the reversed-phase chromatography, the retention time of sample was investigated based on the molecular structure of compound. Several descriptors that were related to retention factors were selected, and then the values of descriptors were calculated with several softwares. The effect of retention factor was measured with calculated values, and the results were obtained that each descriptors of molecular structure of compound have different effect on the retention factor. Therefore, the empirical equation for seven types of descriptors considered was obtained, and it has high values of correlation coefficient. Furthermore, the experimental data and calculated values have good agreement.

Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules

  • Cho, Soo-Gyeong;No, Kyoung-Tai;Goh, Eun-Mee;Kim, Jeong-Kook;Shin, Jae-Hong;Joo, Young-Dae;Seong, See-Yearl
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.399-408
    • /
    • 2005
  • We have utilized neural network (NN) studies to predict impact sensitivities of various types of explosive molecules. Two hundreds and thirty four explosive molecules have been taken from a single database, and thirty nine molecular descriptors were computed for each explosive molecule. Optimization of NN architecture has been carried out by examining seven different sets of molecular descriptors and varying the number of hidden neurons. For the optimized NN architecture, we have utilized 17 molecular descriptors which were composed of compositional and topological descriptors in an input layer, and 2 hidden neurons in a hidden layer.

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Human Action Recognition Using Pyramid Histograms of Oriented Gradients and Collaborative Multi-task Learning

  • Gao, Zan;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.483-503
    • /
    • 2014
  • In this paper, human action recognition using pyramid histograms of oriented gradients and collaborative multi-task learning is proposed. First, we accumulate global activities and construct motion history image (MHI) for both RGB and depth channels respectively to encode the dynamics of one action in different modalities, and then different action descriptors are extracted from depth and RGB MHI to represent global textual and structural characteristics of these actions. Specially, average value in hierarchical block, GIST and pyramid histograms of oriented gradients descriptors are employed to represent human motion. To demonstrate the superiority of the proposed method, we evaluate them by KNN, SVM with linear and RBF kernels, SRC and CRC models on DHA dataset, the well-known dataset for human action recognition. Large scale experimental results show our descriptors are robust, stable and efficient, and outperform the state-of-the-art methods. In addition, we investigate the performance of our descriptors further by combining these descriptors on DHA dataset, and observe that the performances of combined descriptors are much better than just using only sole descriptor. With multimodal features, we also propose a collaborative multi-task learning method for model learning and inference based on transfer learning theory. The main contributions lie in four aspects: 1) the proposed encoding the scheme can filter the stationary part of human body and reduce noise interference; 2) different kind of features and models are assessed, and the neighbor gradients information and pyramid layers are very helpful for representing these actions; 3) The proposed model can fuse the features from different modalities regardless of the sensor types, the ranges of the value, and the dimensions of different features; 4) The latent common knowledge among different modalities can be discovered by transfer learning to boost the performance.