• Title/Summary/Keyword: Description Optimization

Search Result 93, Processing Time 0.021 seconds

Determination of the Overall Heat Transfer Coefficient for Non-isothermal Finite Element Analysis (비 등온 유한요소해석을 위한 접면열전달계수의 결정)

  • 강연식;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 1997
  • In the temperature analysis of hot metal forming process, the heat transfer conditions between the work-piece and the tool have improtant influences upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundary conditions including heat transfer. At the contact surface of two materials with different temperatures, this requires the knowledge of the overall heat transfer coefficient. In order to determine the overall heat transfer coefficient, a technique is developed. The technique involves temperature measurement by using thermocouples during hot upsetting operations and finite element computation. The overall heat transfer coefficient is determined using a non-linear optimization technique.

  • PDF

Method for Shop Floor Control Using Agent-Technique (에이전트 기술 응용 Shop floor 제어 방안)

  • Park, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • Due to the increasing complexity to handle conflicts and interruptions caused by resource failures and rush orders, shop control is obliged to redesign its organization according to the changing demands of the manufacturing control. These demands are leading to the development of decentralization and gradually to their permanent optimization. As a result, a powerful modeling method which can be adapted efficiently is required. The use of agent theory enables specific modeling of the relevant shop planning activities. The planning activities are modeled in a so-called activity modeling through the definition of three classes of agents; Plan Agent, Manufacturing System Agent and Control Agent as well as the description of the cooperative relationship among these agents. On the basis of the activity model the agent-based shop control method is developed which emphasizes the distributed problem-solving and the cooperation with relevant agents.

  • PDF

An analysis scheme for protocols specified in SDL using reachability graph (도달성 그래프를 이용한 SDL 표현 프로토콜 분석 기법)

  • 김환철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3109-3120
    • /
    • 1996
  • SDL has been standardized to specify behavioral aspects of communication systems based on the formal description technique, and it is powerful and user friendly in the sense of supporting human communication and understanding, formal analysis andcomparison of behaviors, alternative implementations and design optimization, and its structural decomposition. However, SDL is not sufficient for an efficient handing of entrire system descriptions because the communication systems are generally very complex, and composed from the various interactions among sub-systems. Also, it is very difficult to explicitly verify dynamic views such as liveness and reachability. it leads the demands on analysis scheme to verify dynamic behaviros of specified systems. This paper presents modeling concepts of Petri Nets from SDL and transformation rules to Numerical Petri Nets to provide efficient technqiques for verification of dynamic behaviors, and proposes the reachability garaph that is able to trace all reachable states of a modeled system and reduce an information loss on the reachability tree.

  • PDF

Numerical Investigation of the Flow and Mixing Characteristics with the Static Mixer in a Catalytic Combustor for the MCFC Power Plant System (MCFC 발전시스템 적용 촉매연소기의 혼합 특성 향상을 위한 Static Mixer의 유동에 관한 수치적 연구)

  • Kim, Chong-Min;Park, Nam-Seob;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • In this work a numerical study to find the characteristics of the internal flow and mixing process has been conducted in a static mixer used in the system of catalytic combustor of the fuel cell power plant. After introducing the model description and final governing equations the present numerical approach is applied to the analysis of static mixer, which may have one or more helical elements inside the circular tube by changing such various parameters as incoming mass flow rates and the number of helical elements. The results show that although the static mixer is efficient in mixing fuel and air, more optimization processes are required to achieve the appropriate mixing characteristics in front of the honeycomb type catalytic combustor used in the MCFC power plant

Constraint Satisfaction Algorithm in Constraint Network using Simulated Annealing Method (Simulated Annealing을 이용한 제약 네트워크에서의 제약 충족방식에 관한 연구)

  • 차주헌;이인호;김재정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.589-594
    • /
    • 1997
  • We have already presented the constraint satisfaction algorithm which could solve the losed loop problem in constraint network by using local constraint propagation, variable elimination and constraint modularization. With this algorithm, we have implemented a knowledge-based system (intelligent CAD) for supporting machine design interactively. In this paper, we present newer constraint satisfaction algorithm which can solve inequalities or under-constrained problems in constraint network, interactively and efficiently. This algorithm is a hybrid type of using both declarative description (constraint represention) and optimization algorithm (Simulated Annealing), simultaneously. The under-constrained problems are represented by constraint networks and satisfied completely with this algorithm. The usefulness of our algorithm will be illustrated by the application to a gear design.

  • PDF

Bitcoin and Its Energy Usage: Existing Approaches, Important Opinions, Current Trends, and Future Challenges

  • Mir, Usama
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3243-3256
    • /
    • 2020
  • Recent years have shown a great interest of public in buying and selling of crypto/digital currency. With hundreds of digital currencies in financial market, bitcoin remains the most widely used, adapted, and accepted currency around the world. However, the critics of bitcoin still consider it a threat to modern day power usage. This paper discusses the important pitfalls, pros, and cons related to bitcoin's energy consumption. The paper begins by highlighting the flexibilities cryptocurrency can bring to online money transfers compared to traditional 'fiat' architecture. Then, the focus of the paper entirely remains on listing various facts related to bitcoin's energy utilization including a brief description of several emerging approaches for energy optimization. This paper is concluded by revealing key current challenges associated to bitcoin's energy usage.

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

RBDO analysis of the aircraft wing based aerodynamic behavior

  • El Maani, Rabii;Makhloufi, Abderahman;Radi, Bouchaib;El Hami, Abdelkhalak
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • The need of progress in engineering designs especially for aerospace structure is nowadays becoming a major industry request. The objectives of this work are to quantify the influence of material and operational uncertainties on the performance of the aerodynamic behavior of an Aircraft Wing, and to give a description of the most commonly used methods for reliability based design optimization (RBDO) to point out the advantages of the application of this method in the design process. A new method is proposed, called Safest Point (SP) that can efficiently give the reliability-based optimum solution for freely vibrating structures with and without fluid flow.

One-Class Support Vector Learning and Linear Matrix Inequalities

  • Park, Jooyoung;Kim, Jinsung;Lee, Hansung;Park, Daihee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.100-104
    • /
    • 2003
  • The SVDD(support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the kernel feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this paper is to consider the problem of modifying the SVDD into the direction of utilizing ellipsoids instead of balls in order to enable better classification performance. After a brief review about the original SVDD method, this paper establishes a new method utilizing ellipsoids in feature space, and presents a solution in the form of SDP(semi-definite programming) which is an optimization problem based on linear matrix inequalities.

Physical Model Investigation of a Compact Waste Water Pumping Station

  • Kirst, Kilian;Hellmann, D.H.;Kothe, Bernd;Springer, Peer
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • To provide required flow rates of cooling or circulating water properly, approach flow conditions of vertical pump systems should be in compliance with state of the art acceptance criteria. The direct inflow should be vortex free, with low pre-rotation and symmetric velocity distribution. Physical model investigations are common practice and the best tool of prediction to evaluate, to optimize and to document flow conditions inside intake structures for vertical pumping systems. Optimization steps should be accomplished with respect to installation costs and complexity on site. The report shows evaluation of various approach flow conditions inside a compact waste water pumping station. The focus is on the occurrence of free surface vortices and the evaluation of air entrainment for various water level and flow rates. The presentation of the results includes the description of the investigated intake structure, occurring flow problems and final recommendations.