• 제목/요약/키워드: Desalination process

검색결과 182건 처리시간 0.027초

초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향 (Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process)

  • 장용선;최용준;이상호
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.

화옹지구 간척생태공원 토지이용계획 (Hwaong Eco-park Land Use Plan in Consideration of Reclamation)

  • 성지영
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.443-449
    • /
    • 2005
  • As sustainable development and environment-friendly efforts in large-scale development projects emerge as major interests at home and abroad, man-made wetlands and eco-park facilities have been newly planned or created when developing reclamation districts recently. In this study, based on findings from a comprehensive review of relevant studies and planning cases, the basic direction and objectives of the plan were developed. A comprehensive analysis on the status of ecological environment and demographic and social environment showed that the planned site is in a process of migrating from early stages of reclamation to middle stages. It was planned for the eco-park to function as a major base along an ecological network consisting a freshwater lake and rivers and streams flowing into the lake in Hwaong District. Through a master plan and sectoral plans were planned according to desalination levels after reclamation. Then, habitats for livings organisms were also planned. The eco-park, the planned site, is also in a process of migrating from the early stages to middles stages. By creating an eco-park that considers post-reclamation ecological environment changes, natural succession processes will be preserved, which is expected to help local ecosystems to restore their functions on their own over a relatively long period of time and enable to observe the restoration process.

  • PDF

수직 증발관에서 CaSO4 Scale 형성과 열전달에 관한 연구 (A Study of CaSO4 Scale Formation and Heat Transfer in a Vertical Tube Evaporator)

  • 홍춘근;최만수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1363-1370
    • /
    • 1999
  • A study of scaling and heat transfer has been carried out for a vertical tube evaporator in which $CaSO_4$ saturated water flows upward. Experimental apparatus including vacuum chambers and heaters has been designed and manufactured to study scaling phenomena for three different pressures(1atm, 0.27atm and 0.16atm). Overall heat transfer coefficients have been measured and shown to decrease with time as scaling proceeds. After the end of experiments, the vertical tube has been cut to measure the thickness of scale at different heights. Below the height where the bulk fluid temperature does not reach saturated temperature, the thickness of scale increases, however, beyond that height occurring saturated condition, the thickness does not vary much or even decreases a little. The measured fouling resistances also support these variations of scale thickness.

중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가 (Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions)

  • 김봉철
    • 상하수도학회지
    • /
    • 제32권4호
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

액상 비료를 유도 용액으로 사용하는 정삼투 기반의 해수 담수화 (Forward Osmosis Based Seawater Desalination using Liquid Fertilizer as Draw Solution)

  • 박성직;안희경
    • 한국농공학회논문집
    • /
    • 제55권2호
    • /
    • pp.21-27
    • /
    • 2013
  • The present study explored the way to desalinate seawater for agricultural irrigation using forward osmosis (FO) process using liquid fertilizer as draw solution. FO experiments were performed in a cross flow mode using flat sheet FO membrane. The effect of membrane orientation, flow rate, and draw solution concentration on the performance of forward osmosis was investigated by measuring water flux of forward osmosis membrane. The water flux when the draw solution was placed against the membrane active layer was lower than the water flux when the feed solution was placed against the membrane active layer. This results indicated that the decrease of effective osmotic pressure by dilutive internal concentration polarization was less than that by concentrative internal concentration polarization. Increasing flow rate from 66.7 to 133.1 $cm^3$/min resulted in increase of the water flux when the membrane active layer orient to draw solution and feed solution, respectively. The reduction of resistance to water flow increased water flux at higher flow rate. The water flux of FO membrane increased with increasing draw solution concentration from 10000 to 30000 mg/L. The water flux for $KH_2PO_4$ draw solution was similar to that for commercial fertilizer. Optimization of FO process would contribute to economically desalinate brackish water for agricultural use.

증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석 (Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position)

  • 김득원;최상민
    • 설비공학논문집
    • /
    • 제28권11호
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

RECENT DEVELOPMENTS OF MEMBRANE TECHNOLOGY IN JAPAN

  • Kimura, Shoji
    • 멤브레인
    • /
    • 제1권1호
    • /
    • pp.5-12
    • /
    • 1991
  • Since the discovery of the Loeb-Sourirajan reverse osmosis membrane, thirty years have passed and many membrane technologies and new membranes for applications have been developed in the world. In the early stage of these developments Japan has not contributed much, but from the middle of 70ties Japan has started its own R&D projects starting from the desalination technology, and now various private industries and government ministries are actively engaging in R & D of membrane technologies in Japan. In Table 1 the chronological developments of important events of developments and projects relating membrane technologies inside and outside of Japan are introduced and their details will be explained. The first membrane technology applied in the Japanese industry was a electrodialysis(ED) process using ion-exchange membranes. These membranes were first developed in early 50ties and the Japanese government decided to use this method for concentration of sea-water to produce salt, which was then produced by solar evaporation. This development program started from 1960 by the Japan Monopoly Corp.(at that time). To apply ED process for sea-water concentration it was necessary to develop ion-exchange membranes having very low electric resistance to avoid energy loss due to Joule heat, and those having selectivity to permeate single valent ions only to avoid scale formation in the ED stacks. Three Japanese companies, Asahi Glass, Asahi Chemical and Tokuyama Soda, have succeeded to develop such membranes, and until 1971 all of the seven salt manufacturing companies had adopted ED for production of food salt.

  • PDF

역삼투 공정을 위한 모델링 총설 및 새로운 복합적 막오염도의 제안 (Review of Basics Reverse Osmosis Process Modeling: A New Combined Fouling Index Proposed)

  • Kim, Albert S.
    • 멤브레인
    • /
    • 제27권4호
    • /
    • pp.291-312
    • /
    • 2017
  • 해수담수화는 최근 전 세계적으로 대두되고 있는 물부족 현상을 해결하기 위한 최적 기술 중 하나이다. 막분리 및 투과 현상의 근본적인 이해는 차후의 막여과 기술의 발전을 위해서 뿐만 아니라, 현재 막기술 증진을 위한 통합적 디자인, 최적화 제어법, 그리고 중장기적 유지관리를 위해서도 매우 중요하다. 이에, 본 연구는 물질 전달 및 여과 현상에 대한 기존의 주요 모델들을 상세히 재검토하고, 통계물리학에 근간하여 주요 막분리 현상들을 이론적으로 분석하며, 원천적 모델에 기초한 물리적 의미와 그들이 실제 막공정에서 미치는 영향들에 대해서 함축적으로 토의하고자 한다. 이론적 재검토의 과정에서 새로이 유도된 복합적 막오염도(Combined Fouling Index (CFI))의 소개도 포함한다.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Ultra-pure water production by integrated electrodialysis-ion exchange/electrodeionization

  • Turek, Marian;Mitko, Krzysztof;Bandura-Zalska, Barbara;Ciecierska, Kamila;Dydo, Piotr
    • Membrane and Water Treatment
    • /
    • 제4권4호
    • /
    • pp.237-249
    • /
    • 2013
  • Ultra-pure water (UPW), a highly treated water free of colloidal material and of a conductivity less than 0.06 ${\mu}S$, is an essential component required by modern industry. One of the methods for UPW production is the electrodialysis-ion exchange (ED/IE) system, in which the electrodialysis (ED) process is used as a preliminary demineralization step. The IE step can be replaced with electrodeionization (EDI) to decrease the volume of post-regeneration lyes. In this paper, the electrodialysis process carried out to relatively low diluate conductivity was investigated and the costs of UPW production were calculated. The optimal value of desalination degree by ED in the ED/IE and ED/EDI systems was estimated. UPW unit costs for integrated ED/IE and ED/EDI systems were compared to simple ion exchange and other methods for UPW production (RO-IE, RO-EDI). The minimal UPW unit costs in ED/EDI integrated system were estimated as $0.37/$m^3$ for feed TDS 600 mg/L and $0.36/$m^3$ for feed TDS 400 mg/L at 64 $m^3/h$ capacity, which was lower than in the comparable ED/IE integrated system ($0.42-0.44/$m^3$). The presented results suggest that an ED/EDI integrated system may be economically viable.