• Title/Summary/Keyword: Derailments

Search Result 15, Processing Time 0.027 seconds

Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction (차륜-레일 구름접촉을 적용한 철도차량 유한요소 모델의 충돌 기인 탈선거동 해석)

  • Lee, Junho;Koo, Jeongseo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2013
  • In this paper, a finite element analysis technique of rolling stock models for collision-induced derailments was suggested using rolling contacts for wheel-rail interaction. The collision-induced derailments of rolling stock can be categorized into two patterns of wheel-climb and wheel-lift according to the friction direction between wheel flange and rail. The wheel-climb derailment types are classified as Climb-up, Climb/roll-over and Roll-over-C types, and the wheel-lift derailment types as Slip-up, Slip/roll-over and Roll-over-L types. To verify the rolling contact simulations for wheel-rail interaction, dynamic simulations of a single wheelset using Recurdyn of Functionbay and Ls-Dyna of LSTC were performed and compared for the 6-typical derailments. The collision-induced derailment simulation of the finite element model of KHST (Korean High Speed Train) was conducted and verified using the theoretical predictions of a simplified wheel-set model proposed for each derailment type.

Integrated Model for Assessment of Risks in Rail Tracks under Various Operating Conditions

  • G. Chattopadhyay;V. Reddy;Larsson, P-O
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • Rail breaks and derailments can cause a huge loss to rail players due to loss of service, revenue, property or even life. Maintenance has huge impact on reliability and safety of railroads. It is important to identify factors behind rail degradation and their risks associated with rail breaks and derailments. Development of mathematical models is essential for prediction and prevention of risks due to rail and wheel set damages, rail breaks and derailments. This paper addresses identification of hazard modes, estimation of probability of those hazards under operating, curve and environmental condition, probability of detection of potential hazards before happening and severity of those hazards for informed strategic decisions. Emphasis is put on optimal maintenance and operational decisions. Real life data is used for illustration.

  • PDF

Analysis of Collision-induced Derailments of a Wheel-set Model Using MBD and FEM Simulation (MBD와 FEM을 이용한 단일윤축 모델의 충돌 후 탈선거동의 해석)

  • Lee, Jun-Ho;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1868-1873
    • /
    • 2011
  • In this paper, a theoretical formulation of a simplified wheel-set model for collision-induced derailments was evaluated by numerical simulations for the wheel-climb derailment and wheel-lift derailment types. The derailment types were classified into the wheel-climb derailment and the wheel-lift derailment according to the friction force direction of the wheel-flange. The wheel-climb derailment type was classified into Climb-up, Climb/Roll-over, and Roll-over-C, and wheel-lift derailment type was classified into Slip-up, Slip/Roll-over and Roll-over-L. To verify the theoretical equations derived for the wheel-climb derailment and the wheel-lift derailment, dynamic simulations using RecurDyn of Functionbay and Ls-Dyna of LSTC were performed and compared for some examples. The derailment predictions of the suggested theoretical formulation were in good agreement with those of the numerical simulations. The direction of the frictional force between the wheel-flange and the rail can be well predicted using the suggested derailment formulation at a initial derailment.

  • PDF

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

Indian Railways: Recent Trends in Control Accidents and Safety Measures for Passengers

  • Kumar, Katta Ashok
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.2 no.4
    • /
    • pp.48-55
    • /
    • 2014
  • Indian railways has been regularly in the news albeit for the wrong reasons. The frequency with which train accidents have been taking place has led to serious doubts in the public mind about the safety of rail travel and also the health of the network. Against this background, an attempt is made in this paper to assess the trends in railway accidents for the period from 2000-01 to 2009-10. The paper also highlighted the various measures taken by IR to prevent accidents to ensure safety to the public.

A study on the parameters to ensure safety against derailment (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung;Mok, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.297-303
    • /
    • 2007
  • Derailment is likely to have a direct connection with human life and must be eliminated. A traveling safety evaluation method based mainly on derailment coefficient has already established. But this method is very difficult because Derailment is caused by multiple factors. To evaluate the derailment factor of running train that runs on the curved track, we make use of mechanism that wheel loads and lateral forces were affected by track and rolling stock parameter. In this paper, deal with a search on the parameter and derailment factor. According to results of computer simulation value of Q/P, running safety is connected with operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio, SMRT train Line No. 5 Bogie is selected to do numerical study considering rolling stock and track condition.

  • PDF

Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels (레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰)

  • Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1319-1327
    • /
    • 1994
  • Since fatigue cracks in rail can be the source of fractures and subsequent derailments, quantitative evaluation of the fatigue behavior and fracture properities due to the analysis results of laboratory test are drawn on the basis for predicting fatigue life and making a decision of safe inspection interval. Charpy V-notch and fracture toughness behavior were evaluated from the results of Charpy impact test. Fatigue test was performed by using CT type specimen under constant amplitude loading, and finally the effects of the following parameters; crack orientation, temperature, and stress ratio, on the fatigue crack growth behavior were studied.

  • PDF

FEM analysis of the tank car for carrying hazardous materials (위험물 수송용 탱크화차에 대한 유한요소 해석)

  • Lim, C.H.;Goo, B.C.
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1540-1545
    • /
    • 2007
  • In these days, many kinds of tank car such as Oil tank car, Asphalt tank car, Sulfuric Acid tank car and Propylene tank car are used for carrying hazardous materials. Although they have a lot of dangerous possibilities when they meet with accidents examples of collisions and derailments there are not prescribed methods or standards for structural analysis using FEM. In this study, the structural stress analysis for an Asphalt tank car(Non-pressurized tank) and a Propylene tank car(Pressurized tank) was performed using the FEM refer to the test method in JIS E 7102(Design Methods for Tanks of Tank Cars). And then we suggested the tank car analysis procedures and considered the results.

  • PDF

A study on the parameters to enhance derailment safety (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.626-631
    • /
    • 2007
  • Technical requirements associated with derailment to ensure running safety of train are discussed. By using estimated derailment coefficient ratio, interaction of various parameters such as operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio are analyzed to enhance derailment safety. Sensitivity analysis in terms of pattern and passage speed of curve is performed by using rolling stock and track conditions associated with SMRT Line No. 5.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).