• Title/Summary/Keyword: Depth segmentation

Search Result 175, Processing Time 0.037 seconds

Distance measurement System from detected objects within Kinect depth sensor's field of view and its applications (키넥트 깊이 측정 센서의 가시 범위 내 감지된 사물의 거리 측정 시스템과 그 응용분야)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.279-282
    • /
    • 2017
  • Kinect depth sensor, a depth camera developed by Microsoft as a natural user interface for game appeared as a very useful tool in computer vision field. In this paper, due to kinect's depth sensor and its high frame rate, we developed a distance measurement system using Kinect camera to test it for unmanned vehicles which need vision systems to perceive the surrounding environment like human do in order to detect objects in their path. Therefore, kinect depth sensor is used to detect objects in its field of view and enhance the distance measurement system from objects to the vision sensor. Detected object is identified in accuracy way to determine if it is a real object or a pixel nose to reduce the processing time by ignoring pixels which are not a part of a real object. Using depth segmentation techniques along with Open CV library for image processing, we can identify present objects within Kinect camera's field of view and measure the distance from them to the sensor. Tests show promising results that this system can be used as well for autonomous vehicles equipped with low-cost range sensor, Kinect camera, for further processing depending on the application type when they reach a certain distance far from detected objects.

  • PDF

An effective background subtraction in dynamic scene. (동적 환경에서의 효과적인 움직이는 객체 추출)

  • Han, Jae-Hyek;Kim, Yong-Jin;Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.631-636
    • /
    • 2009
  • Foreground segmentation methods have steadily been researched in the field of computer vision. Especially, background subtraction which extracts a foreground image from the difference between the current frame and a reference image, called as "background image" have been widely used for a variety of real-time applications because of low computation and high-quality. However, if the background scene was dynamically changed, the background subtraction causes lots of errors. In this paper, we propose an efficient background subtraction method in dynamic environment with both static and dynamic scene. The proposed method is a hybrid method that uses the conventional background subtraction for static scene and depth information for dynamic scene. Its validity and efficiency are verified by demonstration in dynamic environment, where a video projector projects various images in the background.

  • PDF

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates (시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식)

  • Eum, Hyukmin;Yoon, Changyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.

Defect depth estimation using magnetic flux leakage measurement for in-line inspection of pipelines (자기 누설 신호의 측정을 이용한 배관의 결함 깊이 추정)

  • Moon, Jae-Kyoung;Lee, Seung-Hyun;Lee, In-Won;Park, Gwan-Soo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.328-333
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) methods are widely employed for the nondestructive evaluation (NDE) of gas pipelines. In the application of MFL pipeline inspection technology, corrosion anomalies are detected and identified via their leakage filed due to changes in wall thickness. The gas industry is keenly interested in automating the interpretation process, because a large amount of data to be analyzed is generated for in-line inspection. This paper presents a novel approach to the tasks of data segmentation, feature extraction and depth estimation from gas pipelines. Also, we will show that the proposed method successfully identifying artificial defects.

Object Recognition using 3D Depth Measurement System. (3차원 거리 측정 장치를 이용한 물체 인식)

  • Gim, Seong-Chan;Ko, Su-Hong;Kim, Hyong-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF

An Efficient Contour Coding Method Using Depth First Search Algorithm (Depth first search 알고리듬을 이용한 윤곽선 영상의 효과적인 부호화 기법)

  • 김종훈;김한수;김성대;김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1677-1685
    • /
    • 1988
  • In this paper, a new contour coding algorithm is investigated for use in region based image coding. Generally the contour data may be encoded by its chain codes or chain difference codes. But the data compression efficiency is low because of heavy burden for initial absolute coordinates of each chain. To alleviate this problem, the depth first search in graph traversal algorithm, is applied to the chain difference coding method. The proposed coding scheme is shown to be very efficient for contour images obtained by split-merge segmentation. Finally, we can reuce data about 60% in comparison with modified chain difference coding.

  • PDF

Automatic Extraction of Focused Video Object from Low Depth-of-Field Image Sequences (낮은 피사계 심도의 동영상에서 포커스 된 비디오 객체의 자동 검출)

  • Park, Jung-Woo;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.851-861
    • /
    • 2006
  • The paper proposes a novel unsupervised video object segmentation algorithm for image sequences with low depth-of-field (DOF), which is a popular photographic technique enabling to represent the intention of photographer by giving a clear focus only on an object-of-interest (OOI). The proposed algorithm largely consists of two modules. The first module automatically extracts OOIs from the first frame by separating sharply focused OOIs from other out-of-focused foreground or background objects. The second module tracks OOIs for the rest of the video sequence, aimed at running the system in real-time, or at least, semi-real-time. The experimental results indicate that the proposed algorithm provides an effective tool, which can be a basis of applications, such as video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing systems.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Characteristics of Chinese Consumers Related to Clothing Consumption (중국 의류소비자 특성 고찰)

  • 유혜경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.2
    • /
    • pp.233-240
    • /
    • 1998
  • The main objective of this study was to develop a basic information base on Chinese consumers related to clothing purchases. Previous studies on Chinese consumers were extensively reviewed and in-depth interviews were conducted with 12 middle-level managers at Korean apparel companies which market their merchandises in China. Combined results from the reviews on previous studies and interviews indicated that traditional values, communism and industrialization are the major forces which shape contemporary Chinese consumers. Industrialization, in particular, accompanied by influx of western culture and economic development, has resulted in wide-spread phenomenon of conspicuous consumption. Thus, brand and brand images appeared to be the most important considerations for purchasing imported apparels. In addition, diversity of Chinese consumers and geographical differences were emphasized, which indicated need for market segmentation. Other characteristics including body measurements also provided implications for fashion marketing in China.

  • PDF