• Title/Summary/Keyword: Depth radiation

검색결과 638건 처리시간 0.031초

초음파를 이용한 온열료법시 온도분포에 관한 연구 (Thermometry in Hyperthermia induced by Ultrasound A Phantom study)

  • 박찬일;고경환;하성환
    • Radiation Oncology Journal
    • /
    • 제2권1호
    • /
    • pp.21-23
    • /
    • 1984
  • Temperature homogeniety and stationary temperature is the most important thermometric considerations for the clinical use of hyperthermia. A thermal mapping was done in a phantom with thermocouple during hyperthermia which was induced by 1.0MHz,$0.7\~0.8watts/cm^2$ ultrasound and unfocused 2.5cm-diameter transducer. The results were as follows 1. Effective heating range$(42.5^{|circ}C\pm0.5^{\circ}C)$ were obtained 3cm in width and 4cm in depth from surface of phantom and temperature distribution was relatively uniform. 2. There was little heating effect more than 2cm away from transducer axis and more than 5cm in depth. 3. There was hot spots(more than $43^{\circ}C$) in $2.0\pm0.5cm$ depth from transducer along tranducer axis.

  • PDF

철근콘크리트 내부 온습도 경시변화 추정 모델 구축 (Prediction Model for the Change of Temperature and R.H. inside Reinforced Concrete)

  • 박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2016
  • Surplus water inside a concrete other than moisture that is used for hydration of the cement affects the physical properties of the concrete (modulus of elasticity, compressive strength, drying shrinkage, and creep) by drying. Changes in temperature and humidity inside a concrete has correlation with the movement speed and reaction rate of deterioration factors such as carbon dioxide and chloride ions. In this study, comparison was performed between temperature and relative humidity inside the concrete and meteorological data for exposure environment through measurement at the site for two years. Surface temperature of the concrete (depth 1cm) was measured higher by 6℃ during the summers, while it was measured lower by 2℃ during the winters due to solar radiation, wind, and radiation cooling. As for relative humidity, change was large in the depth of 1cm, while more than 85% was maintained in the depth of 10cm.

  • PDF

척추 전이암 환자의 방사선치료 시 Carbon Fabric Blanket 적용에 따른 선량평가 (Dose Assessment According to Application of Carbon Fabric Blanket During Radiation Therapy of the Spine Metastasis Cancer)

  • 양명식;김정수;이선영;권형철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권1호
    • /
    • pp.61-66
    • /
    • 2019
  • The purpose of this study was to improve the unstable treatment posture by placing the Carbon fabric blanket on the couch which was used for the patient fixation for the unstable posture from the severe pain caused by the neuromuscular pressure of the spinal metastatic cancer patient and to analyze the dose difference caused by the energy loss of high energy radiation. Using a linear accelerator, a FC-65G was installed at a depth of 5 cm at a solid phantom at 6 MV and 10 MV energies. The SAD was 100 cm, Gantry angle was $0^{\circ}$, a Cotton and Carbon blanket with a thickness of 1 cm on the couch, The blankets were placed on the couch and the dose was measured according to field size. For the dose measurement, and the dose was measured at 100 MU each time, and the mean value was calculated by repeating the measurement three times in order to reduce the error. The results showed that the difference rate in dose between Carbon blanket and Cotton blanket was respectively -0.54% and -0.75% based on the absence of the blanket(Non). Therefore, it is considered that the use of Carbon fabric blanket, which reduces the patient's pain and does not affect the depth dose, may be useful during radiation therapy of the spine metastasis cancer.

방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구 (Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy)

  • 나수경
    • 대한방사선치료학회지
    • /
    • 제14권1호
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

방사선치료시 물리학적 반음영의 검토 (Study on Physical Penumbra of Radiation Therapy)

  • 김영범;황웅구;김유현
    • 대한방사선치료학회지
    • /
    • 제6권1호
    • /
    • pp.84-88
    • /
    • 1994
  • Proper evaluation about the penumbra is very important to improve the efficacy of radiation theraphy. There are two kinds of physical penumbra, geometric penumbra and transmission penumbra. In this study, we evaluated the variation of physical penumbra according to the varing enery level, changing the field size and depth. Physical penumbra width was decreased as the source size decreased, and as the SDD increased, but the consideration about the scatter radiation and mechanical stability is an important factor. For the two adjacent beams, upper collimator should be used and especially for Co-60 unit, it is efficient to use the extended collimator.

  • PDF

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석 (Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose)

  • 장동근;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권4호
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Improvement of Calculation Accuracy in the Electron Monte Carlo Algorithm with Optional Air Profile Measurements

  • Sung, Jiwon;Jin, Hyeongmin;Kim, Jeongho;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon;Chun, Minsoo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.163-171
    • /
    • 2020
  • Purpose: In this study, the accuracies of electron Monte Carlo (eMC) calculation algorithms were evaluated to determine whether electron beams were modeled by optional air profiles (APs) designed for each applicator size. Methods: Electron beams with the energies of 6, 9, 12, and 16 MeV for VitalBeam (Varian Medical System, Palo Alto, CA, USA) and 6, 9, 12, 16, and 20 MeV for Clinac iX (Varian Medical System) were used. Optional APs were measured at the source-to-detector distance of 95 cm with jaw openings appropriate for each machine, electron beam energy, and applicator size. The measured optional APs were postprocessed and converted into the w2CAD format. Then, the electron beams were modeled and calculated with and without optional APs. Measured profiles, percentage depth doses, penumbras with respect to each machine, and energy were compared to calculated dose distributions. Results: For VitalBeam, the profile differences between the measurement and calculation were reduced by 0.35%, 0.15%, 0.14%, and 0.38% at 6, 9, 12, and 16 MeV, respectively, when the beams were modeled with APs. For Clinac iX, the differences were decreased by 0.16%, -0.31%, 0.94%, 0.42%, and 0.74%, at 6, 9, 12, 16, and 20 MeV, respectively, with the insertion of APs. Of note, no significant improvements in penumbra and percentage depth dose were observed, although the beam models were configured with APs. Conclusions: The accuracy of the eMC calculation can be improved in profiles when electron beams are modeled with optional APs.