• 제목/요약/키워드: Depth parameter

Search Result 721, Processing Time 0.032 seconds

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

Characteristics of Water Environment on Manun Reservoir (중산간 농업용 만운저수지의 수질환경특성)

  • Nam, Gui-Sook;Jang, Jeong-Ryeol;Lee, Gwang-Sik;Yoon, Keung-Sup;Lee, Sang-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Manun Reservoir, located in Andong district has the capacity of 2 million tons in irrigation water supply with the drainage area of $23.8\;km^2$. Manun Reservoir is over fifty year old, and shallow in depth. The ratio of drainage area (DA) to reservoir surface area (SA) as an effective physical parameter on water quality was 56.1 and was higher than those of other agricultural reservoirs. The ratio of reservoir storage (ST) to SA in Manun Reservoir was 4.79, and the mean depth was below 8m. Both ratios of DS/SA, total area (TA)/ST and ST/SA in Manun Reservoir were relatively higher than those in other agricultural reservoir and natural lakes in Korea. These physical parameters in Manun Reservoir, however, had a eutropic potential significance. Average of COD, IN, and TP in Manun Reservoir were 11.1 mg/L 1.426 mg/L, 0.093 mg/L, respectively. In the inflow stream of Manun Reservoir, the TN ($1.426{\sim}3.809\;mg/L$) was higher than those in reservoir. Only Lyngbya spp. was dominant in phytoplankton for this study period and Gymnodinium spp., Peridinium spp., and Cryptomonas spp. were dominant in zooplankton. According to the Carlson's trophic status index, Mnnun Reservoir was eutrophic in 1996, 1997, and 1999, and hypertrophic in 1998.

Evaluation of Dosimetry and Image of Very Low Dose CT Attenuation Correction for Pediatric PET/CT: Phantom Study (팬텀을 이용한 소아 PET/CT 검사 시 감쇄보정 CT 선량과 영상 평가)

  • Bahn, Young-Kag;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • Purpose: To evaluate the dosimetry and image of very low does CT attenuation correction for phantom using pediatric PET/CT. Materials and methods: three PET / CT scanners (Discovery STe, BiographTruepoint 40, Discovery 600) as a child-size acrylic phantom and ion chamber dosimeter (Unfous Xi CT, Sweden) using a CT image acquisition parameters (10, 20, 40, 80, 100, 160 mA; 80, 100, 120, 140 kVp) by varying the depth dose and evaluate $CTDI_{vol}$ value. And each attenuation corrected PET/CT images used NEMA PET Phantom$^{TM}$ (NU2-1994) was evaluated by SUV. Results: Abdominal diagnosis CT dose in general pediatric (about 10 ages) parameter (100 kVp, 100 mA) than very low dose CT parameter (80 kVp, 10 mA) at the depth dose was reduced approximately 92%, $CTDI_{vol}$ was reduced to about 88%. Each CT attenuation corrected parameters PET images showed no change in the value of SUV. Conclusion: for pediatric patients, PET/CT scan can be obtained with very low dose attenuation correction CT (80 kVp, 10 mA), and such attenuation correction CT dose was reduced 100 fold than diagnosis CT dose. PET / CT scan used very low dose CT attenuation correction in pediatric patients can be helpful in reducing radiation dose.

  • PDF

Estimation of Genetic Parameter for Linear Type Traits in Holstein Dairy Cattle in Korea (Holstein종 젖소의 선형심사형질에 대한 유전모수추정)

  • Lee, Ki-Hwan;Sang, Byung-Chan;Nam, Myoung-Soo;Do, Chang-Hee;Choi, Jae-Gwan;Cho, Kawng-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.345-352
    • /
    • 2009
  • This study utilized 332,625 records of linear type scores consisting for 15 primary traits, 22,175 final score and 84,612 pedigree information of 22,175 Holstein cows from 1993 to 2007 in Korea to estimate genetic parameters for 16 type traits. Genetic and error (co)variances between two traits selected from 16 traits were estimated using bi-trait pairwise analyses with DFREML package. The estimated heritabilities for stature (ST), strength (STR), body depth (BD), dairy form (DF), rump angle (RA), thurl width (TW), rear legs side view (RLSV), foot angle (FA), fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), front teat placement (FTP), front teat length (FTL) and final score (FS) were 0.31, 0.21, 0.25, 0.10, 0.29, 0.19, 0.09, 0.06, 0.12, 0.13, 0.12, 0.08, 0.26, 0.20, 0.28 and 0.15, respectively. ST had the highest positive genetic correlation with BD (0.90), while RLSV had the highest negative genetic correlation with FA (-0.56). RA had negative genetic correlation with most udder traits (-0.17~-0.02). Especially, RUW had the higher positive genetic correlation with STR (0.60), BD (0.62), and TW (0.49), however, UD had the higher negative genetic correlation with STR (-0.40) and BD (-0.40). FTL had negative genetic correlation with FUA, RUH, RUW, UC and UD. FS had positive genetic correlation with UC, UD and FTP (0.12, 0.18 and 0.20). However, additional research is needed on the use of these parameters in the genetic evaluation because estimated genetic and error variance-covariance matrices were not positive definite.

Estimation of Genetic Parameter for Milk Production and Linear Type Traits in Holstein Dairy Cattle in Korea (국내 Holstein 젖소의 유생산 형질과 유방 및 지제 선형심사 형질에 대한 유전모수 추정)

  • Won, J.I.;Dang, C.K.;Lim, H.J.;Jung, Y.S.;Im, S.K.;Yoon, H.B.
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.167-178
    • /
    • 2016
  • This study was conducted to estimate genetic parameters for milk production and linear type traits in Holstein dairy cattle in Korea. The data including milk yields, fat yields, protein yields, fat percent, protein percent, somatic score and 15 linear type traits for 10,218 first parity cows collected by Dairy Cattle Improvement Center, National Agricultural Cooperative, Korea, which were calving from January 2009 to April 2013. Genetic and error (co)variances between two traits selected form 19 traits were estimated using bi-trait pairwise analyses with WOMBAT package. The estimated heritabilities for milk yield(MY), fat yield(FY), protein yield(PY), fat percent(FP), protein percent(PP), somatic cell score(SCS), udder depth(UD), udder texture(UT), median suspensory(MS), fore udder attachment(FUA), front teat placement (FTP), rear attachment height(RAH), rear attachment width(RAW), rear teat placement(RTP), front teat length(FTL), foot angle(FA), heel depth(HD), bone quality(BQ), rear legs side view(RLSV), rear legs rear view(RLRV) and locomotion(LC) were 0.128, 0.144, 0.100, 0.273, 0.333, 0.090, 0.179, 0.066, 0.104, 0.109, 0.127, 0.099, 0.059, 0.069, 0.154, 0.014, 0.010, 0.052, 0.065, 0.175 and 0.031, respectively. Among the genetic correlations, UD, UT, FTP, RAW, FTL, FA and RLSV with MY were -0.334, 0.271, 0.445, 0.544, 0.076, -0.281 and -0.228, respectively, and MS, FTP, RTP, FTL, FA, BQ, RLSV, RLRV and LC with PP were -0.147, -0.182, -0.262, -0.136, 0.355, 0.311, 0.135, 0.233 and 0.143, respectively. Especially, MY had the highest positive genetic correlation with RAW (0.544), while SCS had the highest negative genetic correlation with LC (-0.603). FP had negative genetic correlation with most udder traits, whereas, FP had positive genetic correlation with leg and hoof traits (0.056 - 0.355).

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

Experimental Study of Overtopping Void Ratio by Wave Breaking (쇄파에 의한 월파의 기포분율에 대한 실험적 연구)

  • Ryu, Yong-Uk;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • The aeration of an overtopping wave on a vertical structure generated by a plunging wave was investigated through laboratory measurements of void fraction. The overtopping wave occurring after wave breaking becomes multi-phased and turbulent with significant aeration, so that the void fraction of the flow is of importance. In this study, fiber optic reflectometer and bubble image velocimetry were employed to measure the void fraction, velocity, and layer thickness of the overtopping flow. Mean properties were obtained by ensembleand time-averaging the repeated instantaneous void fractions and velocities. The mean void fractions show that the overtopping wave is very high-aerated near the overtopping wave front and relatively low-aerated near the deck surface and rear free surface of the wave. The flow rate and momentum of the overtopping flow estimated using the measured data show that the void ratio is an important parameter to consider in the multiphase flow. From the similarity profiles of the depth-averaged void fraction, velocity, and layer thickness, one-dimensional empirical equations were obtained and used to estimate the flow rate and momentum of the overtopping flow.

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

Characteristics of Velocity and Electrical Resistivity in Gassy Sediments Results of Mudbelt Sediments in the Southeastern Inner Shelf of Korea (가스함유퇴적물에서의 음파전달속도 및 전기비저항 특성: 한국남동해역 이토대 퇴적물의 분석결과)

  • Kim, Dae-Choul;Park, Soo-Chul;Seo, Young-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.249-258
    • /
    • 2001
  • Compressional wave velocity and electrical resistivity of muddy sediments in the southeastern inner shelf of Korea were studied using nine piston core samples. The acoustic and physical properties were measured with 10 cm depth interval. Sediment structures were examined by x-radiographs of the cored sediments. Subbottom profiles were obtained by a high-resolution acoustic subbottom profiler. Acoustic turbid layers are clearly seen on the profiles, and x-radiographs of the sediments showed degassying structures formed by gas escaping. On the basis of x-radiographic images, velocities, electrical resistivities and physical properties, the sediments are divided into gassy and non-gassy sediments. The presence of gas and degassying structures result in a marked variation in velocity and electrical resistivity. It can be concluded that velocity and electrical resistivity arep arameter to recognize gassy sediment. The velocity is important parameter to indicate gassy sediment.

  • PDF