• Title/Summary/Keyword: Depth of information

Search Result 4,402, Processing Time 0.036 seconds

Coding Technique using Depth Map in 3D Scalable Video Codec (확장된 스케일러블 비디오 코덱에서 깊이 영상 정보를 활용한 부호화 기법)

  • Lee, Jae-Yung;Lee, Min-Ho;Chae, Jin-Kee;Kim, Jae-Gon;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.237-251
    • /
    • 2016
  • The conventional 3D-HEVC uses the depth data of the other view instead of that of the current view because the texture data has to be encoded before the corresponding depth data of the current view has been encoded, where the depth data of the other view is used as the predicted depth for the current view. Whereas the conventional 3D-HEVC has no other candidate for the predicted depth information except for that of the other view, the scalable 3D-HEVC utilizes the depth data of the lower spatial layer whose view ID is equal to that of the current picture. The depth data of the lower spatial layer is up-scaled to the resolution of the current picture, and then the enlarged depth data is used as the predicted depth information. Because the quality of the enlarged depth is much higher than that of the depth of the other view, the proposed scheme increases the coding efficiency of the scalable 3D-HEVC codec. Computer simulation results show that the scalable 3D-HEVC is useful and the proposed scheme to use the enlarged depth data for the current picture provides the significant coding gain.

High-resolution Depth Generation using Multi-view Camera and Time-of-Flight Depth Camera (다시점 카메라와 깊이 카메라를 이용한 고화질 깊이 맵 제작 기술)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • The depth camera measures range information of the scene in real time using Time-of-Flight (TOF) technology. Measured depth data is then regularized and provided as a depth image. This depth image is utilized with the stereo or multi-view image to generate high-resolution depth map of the scene. However, it is required to correct noise and distortion of TOF depth image due to the technical limitation of the TOF depth camera. The corrected depth image is combined with the color image in various methods, and then we obtain the high-resolution depth of the scene. In this paper, we introduce the principal and various techniques of sensor fusion for high-quality depth generation that uses multiple camera with depth cameras.

A Method of Estimating the Human Height Using Depth Images (깊이영상을 이용한 사람의 키 추정 방법)

  • Kim, Heung-Jun;Park, Yoo-Hyun;Kwon, Soon-Kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • In This Paper, We Propose a Method to Estimate the Human Height from the Depth Image Obtained using a Depth Camera. Using the depth Image, Accurate Measurement for Human Height is Possible Compared with Color Image. This Paper Presents a Method to Detect the Center of a Person in the Vertical Direction and to Accumulate the Measured Height Values ​at the Center Position. Simulation Results Show that the Proposed Method has Better Performance than the Conventional Methods.

Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation (움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환)

  • Kwon Byong-Heon;Seo Burm-suk
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In this paper we propose real-time cocersion methods that can convert into stereoscopic image using depth map that is formed by motion detection extracted from 2-D moving image and region segmentation separated from image. Depth map which represents depth information of image and the proposed absolute parallax image are used as the measure of qualitative evaluation. We have compared depth information, parallax processing, and segmentation between objects with different depth for proposed and conventional method. As a result, we have confirmed the proposed method can offer realistic stereoscopic effect regardless of direction and velocity of moving object for a moving image.

  • PDF

Enhancing Single Thermal Image Depth Estimation via Multi-Channel Remapping for Thermal Images (열화상 이미지 다중 채널 재매핑을 통한 단일 열화상 이미지 깊이 추정 향상)

  • Kim, Jeongyun;Jeon, Myung-Hwan;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.314-321
    • /
    • 2022
  • Depth information used in SLAM and visual odometry is essential in robotics. Depth information often obtained from sensors or learned by networks. While learning-based methods have gained popularity, they are mostly limited to RGB images. However, the limitation of RGB images occurs in visually derailed environments. Thermal cameras are in the spotlight as a way to solve these problems. Unlike RGB images, thermal images reliably perceive the environment regardless of the illumination variance but show lacking contrast and texture. This low contrast in the thermal image prohibits an algorithm from effectively learning the underlying scene details. To tackle these challenges, we propose multi-channel remapping for contrast. Our method allows a learning-based depth prediction model to have an accurate depth prediction even in low light conditions. We validate the feasibility and show that our multi-channel remapping method outperforms the existing methods both visually and quantitatively over our dataset.

Stereoscopic Millimeter-wave Image Processing for Depth Information

  • Park, Min-Chul;Son, Jung-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1022-1024
    • /
    • 2009
  • Stereoscopic Images provide depth information with the relative distances between the objects in the images. There are many different ways to extract disparity maps from the visible spectral images. For the infrared spectral range, the same approach cannot be utilized for the innate low resolution and colorless features because typical methods require corresponding features between the images. The authors suggest a new approach that makes use of image segmentation to obtain depth information for stereoscopic millimeter-wave images. For image segmentation a selective visual attention model based on the theory of a feature-integration of attention is used. Experimental results show the proposed method provides reasonable depth information for object shape recognition and display.

  • PDF

A Hybrid Focus Method Using Multiple Laser Slits (다중 레이저 슬릿광을 이용한 하이브리드 초점 방법)

  • Shin Y.S.;Kim G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.706-709
    • /
    • 2005
  • A hybrid focus method with multiple laser slits has been newly proposed and it is based on the integration of DFD and DFF Rough depth information is estimated using DFD equipped with multiple laser slits, and then DFF is applied to only each specific depth range using the depth information resulting from DFD. The proposed hybrid method gives more accurate results than DFD and DFF, and faster measurement than DFF. Its performance has been verified through experiments of calibration blocks with sharp depth discontinuity.

  • PDF

A Study on the Construction of the Database Structure for the Korea In-depth Accident Study (한국형 교통사고 심층조사 DB 체계 구축에 대한 연구)

  • Kim, Siwoo;Lee, Jaewan;Youn, Younghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • The accident statistics use the data from police accident reports and statistics. Although the official accident statistics are useful, they provide very limited information about how accidents occur, the cause of the accident and the injury mechanisms. This limitations could be overcome by carrying out the in-depth accident study and analysing investigations, collecting more detailed information. Meanwhile a net of in-depth investigation teams are operating worldwide, such as NASS (National Accident Sampling System) and CIREN (Crash Injury Research and Engineering Network) in US, OTS (On the spot investigation) in UK. In this study, the database structure and variables of Korea in-depth accidents investigation system would be proposed through considering the database structure of GIDAS (Germany In-Depth Accidents Study). GIDAS is one of the best system on the in-depth accident study system in the world. GIDAS was established in 1999 as a cooperation project between Federal Highway Research Institute of Germany (BASt) and research association on automotive engineering of German Car Industry(FAT). The iGLAD (Initiative for the Global Harmonization of Accident Data) was also considered to introduce into the database variables of Korea in-depth accident study. Current police reports were compared with GIDAS and iGLAD. To collaborate of the Worldwide in-depth accident data, this paper proposed that the database of Korea in-depth accident study would be introduced the structure of GIDAS and the core variables of iGLAD. Harmonization of the structures and core variables of Korea in-depth accident study will be better than the making unique ones. The database structure and core variables of KIDAS(Korea In-Depth Accident Study) introduced of GIDAS and iGLAD.

Efficient Compression Technique of Multi-view Image with Color and Depth Information by Layered Depth Image Representation (계층적 깊이 영상 표현에 의한 컬러와 깊이 정보를 포함하는 다시점 영상에 대한 효율적인 압축기술)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.186-193
    • /
    • 2009
  • Multi-view video is necessary to develop a new compression encoding technique for storage and transmission, because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method by presentation of efficient layered depth image using real distance comparison, solution of overlap problem, and YCrCb color transformation. In experimental results, confirmed high compression performance and good reconstructed image.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF