• Title/Summary/Keyword: Depth function

Search Result 1,337, Processing Time 0.028 seconds

Exploratory Study of the Cognitive Function of the Image: Focus on the Thought-Evoking Function (이미지의 인지적 기능에 대한 탐색적 고찰: 사고유발기능을 중심으로)

  • Lee, Mo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3599-3608
    • /
    • 2014
  • This paper discusses the cognitive function of the image, focusing on the thought-evoking function of the image. Collages artworks were developed to determine how specifically the thought-evoking function of an image takes effect in actual cases. In addition, the cognitive responses of the research participants on the image were analyzed, centering on the thought-evoking function of the image, through an in-depth interview. The image performs the function to concentrate attention on a specific object and to process it more thoroughly. The image increases the immersion of the participants, evoked thought and activated conversation. This study probed the cognitive function of the image and is expected to greatly expand our understanding of human cognition. In particular, it is expected to provide useful insight into the integration of science and art.

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

A Study on the Facade in Depth of Architecture - Focusing on works of Paul $C\acute{e}zanne$ - (건축 입면의 깊이에 관한 연구 - Paul $C\acute{e}zanne$의 회화를 중심으로 -)

  • Yook, Ok-Soo
    • Journal of architectural history
    • /
    • v.15 no.4
    • /
    • pp.57-73
    • /
    • 2006
  • To begin with the purpose of protecting human life from the exterior in the prehistoric age, architecture was nothing but a shelter without any relation between the exterior and the intoner. But, today, with the community developed, architecture can not be resisted with her own function and have to change of the reciprocal one. Different with the oriental architecture, we can see, western architecture has developed in the stream of the form. The main idea of the space in terms of the relation, above all, is mostly concerned with relation between the exterior and the interior like between the architecture and the city. So the role of the facade in depth is the intermediation which consist to the relation in the exterior and interior of architecture. Considering a relation between two elements; the exterior and the interior, we can be inspired in the case of paintings, especially in the works of the Paul $C\acute{e}zanne$. $C\acute{e}zanne$ originally show the depth of space by different disposition of three parts : the background, the objects and intermediate space between the former. For instance, different with the other painters who put the background rear in the canvas and objects in the front of the background, $C\acute{e}zanne$ took the background and objects a same value and assure a depth in space by virtue of the intermediate space. Finally, by putting the background in forward of layer in the canvas and objects situated behind the background, the depth of the space can be occurred. Same as the idea of $C\acute{e}zanne$, Giuseppe Terragni and jean Nouvelle in architecture also intensify their effects through the activation of intermediate space between the interior facade and exterior frame. Not limited in the relation with the architecture and the city, space in relation gives us a higher quality of architectural promenade in depth.

  • PDF

Effect of Next-Generation Exome Sequencing Depth for Discovery of Diagnostic Variants

  • Kim, Kyung;Seong, Moon-Woo;Chung, Won-Hyong;Park, Sung Sup;Leem, Sangseob;Park, Won;Kim, Jihyun;Lee, KiYoung;Park, Rae Woong;Kim, Namshin
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2015
  • Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a high depth of ${\sim}200{\times}$. We observed that most function-related diverse variants in the human exonic regions could be detected at a sequencing depth of $120{\times}$. Furthermore, investigation using a diagnostic gene set showed that the number of clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about $120{\times}$. Moreover, the phenomena were consistent across the breast cancer samples.

Depth estimation of an underwater target using DIFAR sonobuoy (다이파 소노부이를 활용한 수중표적 심도 추정)

  • Lee, Young gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • In modern Anti-Submarine Warfare, there are various ways to locate a submarine in a two-dimensional space. For more effective tracking and attack against a submarine the depth of the target is a critical factor. However, it has been difficult to find out the depth of a submarine until now. In this paper a possible solution to the depth estimation of submarines is proposed utilizing DIFAR (Directional Frequency Analysis and Recording) sonobuoy information such as contact bearings at or prior to CPA (Closest Point of Approach) and the target's Doppler signals. The relative depth of the target is determined by applying the Pythagorean theorem to the slant range and horizontal range between the target and the hydrophone of a DIFAR sonobuoy. The slant range is calculated using the Doppler shift and the target's velocity. the horizontal range can be obtained by applying a simple trigonometric function for two consecutive contact bearings and the travel distance of the target. The simulation results show that the algorithm is subject to an elevation angle, which is determined by the relative depth and horizontal distance between the sonobuoy and target, and that a precise measurement of the Doppler shift is crucial.

Simulation of Stage-Storage Curve Function in Irrigation Reservoirs (저수지 내용적 곡선의 모의발생)

  • 김현영;윤인택;최용선;오수훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.73-80
    • /
    • 1995
  • The uses of stage-storage curve function are diverse in irrigation reservoirs. The curve functions would be used to determine the optimal size of spillway length and the inundation area above full water level based on the flood routing in reservoirs. In addition, the curve function would he used to transform the stage to the storage for the reservoir water management, in which the storage is the supply water. Besides those, the curve is necessary for the planning of dredging, the estimation of the effective and the dead storage, the drought management by reservoir, etc. The curve function data, however, are almost unavailable for these purposes. According to the statistics, about 74% of the 2, 900 resevoirs which are maintained by Farm Land Improvement Association have no more effective data. Therefore, the simulation of the curve function could be better alternative. The curve functions were simulated derivating the regression equations based on the basin relief ratio and the effective depth. The results of the verification show the enough reliability of the application to generate the curve function in some reservoirs which do not have the surveyed stage-storage data. Also, even though the averaged curve function would be applicated without the basin relief ratio data, the result shows that the simulated curve is closer to the real one than the linear function by only the existing effective storage data.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (2) (수신함수를 이용한 관측소 하부의 지진파 속도구조 (2))

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.3-7
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-lying, homogeneous layers. Events divide into 4 groups. four azimuths corresponding to events in group a(southwest), b(south), c(southeast), d(northeast). The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth. The conard discontinuity lies around 18 km and moho discontinuity lies range from 30 to 34 km.

  • PDF

Behaviors of Reflected and Transmitted Waves for Geometric Change of Submerged Breakwater (잠제의 형상 변화에 따른 반사파 및 투과파의 거동특성)

  • Lee, Cheol-Eung;O, Won-Taek
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.139-148
    • /
    • 2000
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves, and depth averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear monochromatic wave. The numerical model is correctly formulated by using both the finite amplitude shallow water equations with the effects of bottom friction and the explicit dissipative Lax-Wendroff finite difference scheme, also satisfactorily verified by comparison with the other results. The behaviors of reflected and transmitted waves with respect to geometric parameters of submerged breakwater such as the slope, crest depth, and crest width are numerically analyzed in this study. In particular, the reflection and transmission coefficients are quantitatively calculated as the function of geometric parameter of submerged breakwater. It is found that the crest depth among parameters related to practical design may be the most important parameter in designing the submerged breakwater. Therefore, the effective and economic performances of submerged breakwater should be depended on the determination of optimal crest depth.

  • PDF

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Breakdown Voltage and On-resistance Characteristics of the Surface Doped SOI RESURF LDMOSFET (표면 도핑 기법을 사용한 SOI RESURF LDMOSFET의 항복전압 및 온-저항 특성 분석)

  • Kim Hyoung-Woo;Kim Sang-Cheol;Bahng Wook;Kang In-Ho;Kim Kl-Hyun;Kim Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.23-28
    • /
    • 2006
  • In this paper, breakdown voltage and on-resistance characteristics of the surface doped SOI RESURF LDMOSFET were investigated as a function of surface doping depth. In order to verify the variation of characteristics, two-dimensional device simulation was carried out. Breakdown voltage of the proposed structure is varied from $73 {\~}138V$ while surface doping depth varied from $0.5{\~}2.0{\mu}m$. And on-resistance is decreased from $0.18{\~}0.143{\Omega}/cm^2$ while surface doping depth increased from $0.5 {\~}2.0{\mu}m$. Maximum breakdown voltage of the proposed structure is 138 V at $1.5{\mu}m$ depth of surface doping, yielding $22.1\%$ of improvement of breakdown voltage in comparison with that of the conventional SOI RESURF LDMOSFET with same epi-layer concentration. On-resistance characteristic is also improved about $21.7\%$.