• 제목/요약/키워드: Depth dose distribution

검색결과 160건 처리시간 0.019초

치료부위(治療部位)두께에 따른 Co-60 γ선(線)과 10MV X선(線)의 선축상(線軸上) 선량분포(線量分布)의 변화(變化) (Change of Dose Distribution on the Beam Axis of 60Co γ Ray and 10MV X-Ray with Part Thickness)

  • 강위생;고경환;하성환;박찬일
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.21-24
    • /
    • 1983
  • Co ${\gamma}$선과 10MV x선으로 폴리스티렌 팬톰에 조사하여 이온함으로 배면과 배면근처의 선량을 측정한 결과는 아래와 같다. 1. 측정점 이하의 팬톰의 두께가 증가함에 따라 선량율과 선량보정계수가 증가하였으며 그 두께가 20cm 이상인 경우에는 일정하였다. 선량보정계수는 1 이하였다. 2. 조사면의 크기가 클수록, 측정점의 깊이가 깊을 수록 선량보정계수는 감소하였다. 3. 선량에 후방산란선량의 기여도는 조사면이 클수록, 깊이가 얕을수록, 그 깊이 이하의 물질의 두께가 두꺼울수록 증가하였다. 4. 10MV x선의 경우에도 선량보정계수는 같은 유형으로 변하기는 했지만 그 값이 0.995~1.000이었다. 5. $^{60}Co$에 경우에 치료부위의 두께가 10cm 이상이면 조사시간을 보정하지 않아도 좋을 것이다.

  • PDF

치료 방사선 선속(Flux)에 포함된 산란전자의 분포와 에너지 측정 (The Measurements of Energy and Distribution of Scattered Electrons in Therapeutic X-Ray Beam)

  • Vahc, Young-Woo;Park, Kyung-Ran;Ohyun Kwon;Lee, Yong-Ha;Kim, Tae-Hong;Kim, Sookil
    • 한국의학물리학회지:의학물리
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2002
  • 치료방사선 선형가속기에서 출력되는 광자선의 선속 (flux)에는 gantry head로부터 발생되는 오염전자를 포함하고 있으며, 오염전자의 발생은 주로 gantry head의 부속장비 또는 방사선 치료를 위해 gantry head 밑에 설치되는 부속장치 등에서 광자선과 매질의 전자쌍생성, 또는 컴프톤 산란전자 등의 물리적 현상으로 발생된다. 오염전자는 표면영역의 수cm 깊이의 선량 분포에 영향을 주고 있으며, 이것은 방사선 치료 시 skin-sparing 효과를 감소시키는 등 임상적인 측면에 영향을 주고 있다. 그러므로 선형가속기에서 발생되는 오염전자의 특성을 이해 할 필요가 있다. 본 연구는 선형가속기 (Clinac 1800, Varian )에서 출력되는 15MV 광자 선속에서 조사야의 크기가 0.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$에서 30.0$\times$30.0 $\textrm{cm}^2$ 대해 구리판(Cu)의 부분적 오염전자 제거 능력과, 조사야의 부분 차폐 방법을 이용하여 물팬톰 내의 선량분포의 변화를 측정하므로써 오염전자의 특성을 분석하였다. 그 결과 오염전자는 조사야의 중심축으로부터 넓게 퍼진 cone 모양의 분포를 하고 있었으며, 또한 오염전자가 갖는 평균 에너지는 약 3.0MeV로 나타났다. 그러므로 오염전자는 표면으로부터 2.5cm 깊이까지 분포하였다. 이러한 결과로써 광자선속에 포함된 오염전자를 제거하고 순수한 광자선을 이용한다면 buildup 영역 및 표면선량이 감소되고, 최대선량지점이 좀더 깊어진다.

  • PDF

표피로 부터 buildup 영역까지 흡수되는 암치료용 방사선의 선량분석 (Analysis of dose from surface to near the buildup region in the therapeutic X-ray beam)

  • Vahc, Young-Woo
    • 한국의학물리학회지:의학물리
    • /
    • 제6권2호
    • /
    • pp.41-50
    • /
    • 1995
  • 암치료용 방사선 (15 MV의 에너지를 갖는 광자선) 속에 있는 흡수선량과 불순전자 또는 산란 광자에 관한 분포를 광자선 면적 크기에 따른 변화와 광자선 면적을 반만 차폐시킨 선속에 대하여 연구 조사하였다. 광자선의 에너지를 15MV로 주어질때 광자선 최대 흡수깊이 $d^{max}$ 값은 광자선의 면적을 증가시키면 시킬수록(5$\times$5 에서 30$\times$30$\textrm{cm}^2$)d$_{max}$ 값은 감소된다. 이는 광자선 즉 방사선을 발생시키는 가속기 기계 속에 있는 여러 부품 (flattening filter, collimator jaws, tray holder,……)과 상호작용하여 형성된 불순전자로 인하여 d$_{max}$ 값이 표피쪽으로 이동되어 buildup 영역에 높은 선량흡수를 갖게 된다. 최대 흡수깊이 값을 계산할 때 이러한 현상을 고려하지 않으면 그릇된 data 값을 갖는다. 대부분의 불순 전자는 광자선 중심에 주로 분포하며 그 진행거리는 30.0mm 이하의 짧은 거리를 갖는다. 이 불순전자가 30.0mm이내(즉 buidup 영역)에 전부 흡수되므로 buidup 영역은 높은 선량흡수를 갖게되어 해를 주게된다. 그러므로 이러한 불순전자를 제거시키므로서 buidup 영역에 낮은 선량 흡수를 갖을 뿐 아니라 d$_{max}$ 값도 역시 깊은 곳까지 이동시켜 치료에 효과적인 방법 이 창출된다.

  • PDF

광자선과 전자선의 인접조사에서 선속 퍼짐현상이 고려된 전자선 차폐물을 이용한 접합 조사면의 선량분포 특성 (Characteristics of Dose Distribution at Junctional Area Using the Divergency Cutout Block in the Abutted Field of Photon and Electron Beams)

  • 임인철;이재승
    • Journal of Radiation Protection and Research
    • /
    • 제36권3호
    • /
    • pp.168-173
    • /
    • 2011
  • 본 연구는 조사통(electron cone)에 삽입되는 전자선 차폐물의 제작방법에 따른 X-선과 전자선의 인접 조사면의 선량분포 특성을 알아보고자 하였다. 차폐물의 제작은 전자선속 퍼짐현상을 고려한 차폐물(divergency block)과 고려하지 않은 차폐물(straight block)을 구분하여 제작하였다. 6 MV X-선과 10 MeV 전자선을 대상으로 표면에서 X-선과 전자선의 조사면을 인접시키고 측정 깊이 0, 1, 2, 3 cm에서 빔 측면도(beam profile)를 측정하였다. 측정 결과 인접 조사면의 선량분포는 straight block의 경우, 기준 투여선량의 5%를 초과하는 고선량 영역과 인접 조사면에서 급격한 선량분포를 형성하였으나 divergency block의 경우, 측방산란효과가 감소함으로서 고선량 영역이 현저하게 감소하였으며 인접 조사면에서 균일한 선량분포를 보였다. 따라서 전자선속 퍼짐을 고려한 경우 선량학적 이점을 제공하였고 이를 임상에 적용하기 위하여 전자선의 차폐물 제작방법에 따른 선량측정을 신중하게 고려해야 할 것이다.

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh;Dhaliwal, A.S.;Kahlon, K.S.;Singh, Suhkpal
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.674-680
    • /
    • 2022
  • In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

4MV X-선을 이용한 조직보상체 두께비 연구 및 응용 (A study on tissue compensator thickness ratio and an application for 4MV X-rays)

  • 김영범;정희영;권영호;김유현
    • 대한방사선치료학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 1996
  • A radiation beam incident on irregular or sloping surface produces an inhomogeneity of absorbed dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator should be made based on experimentally measured thickness ratio. The thickness ratio depends on beam energy, distance from the tissue compensator to the surface of patient, field size, treatment depth, tissue deficit and other factors. In this study, the thickness ratio was measured for various field size of $5cm{\times}5cm,\;10cm{\times}10cm,\;15cm{\times}15cm,\;20cm{\times}20cm$ for 4MV X-ray beams. The distance to the compensator from the X-ray target was fixed, 49cm, and measurement depth was 3, 5, 7, 9 cm. For each measurement depth, the tissue deficit was changed from 0 to(measurement depth-1)cm by 1cm increment. As a result, thickness ratio was decreased according to field size and tissue deficit was increased. Use of a representative thickness ratio for tissue compensator, there was $10\%$ difference of absorbed dose but use of a experimentally measured thickness ratio for tissue compensator, there was $2\%$ difference of absorbed dose. Therefore, it can be concluded that the tissue compensator made by experimentally measured thickness ratio can produce good distribution with acceptable inhomogeneity and such tissue compensator can be effectively applied to clinical radiotherapy.

  • PDF

방사선치료에서 3D 프린터를 이용한 기능적 조직보상체의 제작 (Manufacturing a Functional Bolus Using a 3D printer in Radiation Therapy)

  • 이이성;김정구
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권1호
    • /
    • pp.9-14
    • /
    • 2020
  • Commercial plate bolus is generally used for treatment of surface tumor and required surface dose. We fabricated 3D-printed bolus by using 3D printing technology and usability of 3D-printed bolus was evaluated. RT-structure of contoured plate bolus in the TPS was exported to DICOM files and converted to STL file by using converting program. The 3D-printed bolus was manufactured with rubber-like translucent materials using a 3D printer. The dose distribution calculated in the TPS and compared the characteristics of the plate bolus and the 3D printed bolus. The absolute dose was measured inserting an ion chamber to the depth of 5 cm and 10 cm from the surface of the blue water phantom. HU and ED were measured to compare the material characteristics. 100% dose was distributed at Dmax of 1.5 cm below the surface when was applied without bolus. When the plate bolus and 3D-plate bolus were applied, dose distributed at 0.9 cm and 0.8 cm below the surface of the bolus. After the comparative analysis of the radiation dose at the reference depth, differences in radiation dose of 0.1 ~ 0.3% were found, but there was no difference dose. The usability of the 3D-printed bolus was thus confirmed and it is considered that the 3D-printed bolus can be applied in radiation therapy.

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • 제33권3호
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

물질을 투과한 고에너지 전자선의 선량변화 (Studies on the Interaction of High Energy Electron with Various Matters)

  • 추성실;김귀언;박창윤
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.11-19
    • /
    • 1983
  • Interaction between high energyelectrons and matters had many complex reactions and the high energy electrons lost their energies with collision and scattering, therefore, electrons distribution in matters was shown as various situation by scattering, exciting and ionizing with moleculars. We experimentally studies with 13 MeV Linear Accelerator and thermoluminescence dosimeter using aluminium and Teflon, etc., and measured energy loss of electrons, electron range, electron scattering and dose distribution in matter. We compared the results with theoretical formular, between 4-qw MeV, the energy loss of electrons was decreased by 2 MeV per $1g/cm^2$ but under 1MeV it was rapidly decreased. Electron range in matter reached to $0.5/cm^2$ per 1MeV of incident energy at 6-12MeV. The dose distribution in matter was increased slightly to some depth by total distribution i.e., the combined intensity of primary and secondary radiant and it was rapidly decreased near the maximum range of electrons. Energy loss of electrons and electron range measured by experiment were coincided with theoretical equations of L. Landau and Feather under 5 and 3% errors respectively. The dose distribution of electrons in matter was similar to L.V. Spencer formular, however, we had found that it was quite different in accordance with the field size and that new formular of dose distribution was induced as empirical function contained experimental factors according to field size.

  • PDF

Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구 (Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution)

  • 이준성;김양수;이선영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권5호
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.