• Title/Summary/Keyword: Depth Map Upsampling

Search Result 15, Processing Time 0.026 seconds

Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map (깊이맵 업샘플링을 이용한 객관적 메트릭과 3D 평가의 비교)

  • Mahmoudpour, Saeed;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.204-214
    • /
    • 2015
  • Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Depth Upsampler Using Color and Depth Weight (색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플러)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.431-438
    • /
    • 2016
  • In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Depth Map Upsampling via Markov Random Field without Color Boundary Noise Effect (컬러경계 잡음 현상을 제거한 Markov 랜덤 필드 기반 깊이맵 업샘플링)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.101-104
    • /
    • 2014
  • 3차원 영상 제작을 위해서는 장면의 색상 영상과 함께 깊이 정보가 필요하다. 일반적으로 깊이를 측정하는 TOF 카메라에 의해 획득된 깊이 영상은 컬러 영상에 비해 매우 작은 해상도의 영상을 갖게 되는 문제가 있다. 따라서 색상 영상과 함께 3차원 영상 제작에 깊이 영상을 사용하기 위해서는 저해상도 깊이 영상의 업샘플링 방법이 필요하다. 특히 컬러 영상에서 사물 간의 경계에 해당하는 부분에서 색상 차이를 인지하지 못하여 깊이 맵을 부적절하게 처리하게 되는 경우가 발생한다. 본 논문에서는 색상 영상에서 경계부분에 해당하는 영역을 이용하여 저해상도 깊이 영상을 업샘플링 하는 방법을 제안한다. 깊이 영상을 업샘플링 할 때 중요하게 다루어야 할 경계 부분을, 고해상도 색상 영상과 저해상도 깊이 영상을 이용하여 찾아낸다. 색상 경계 부분을 고려하여 깊이 영상 업샘플링을 위한 에너지 함수를 MRF를 이용하여 모델링하고, 신뢰 확산(belief propagation)방법을 이용하여 에너지 함수 최적화를 수행한다. 제안한 방법은 기존의 다른 에너지 함수나 필터 기반 업샘플링 방법보다 우수한 성능을 나타내었다.

  • PDF

Depth map Resolution and Quality Enhancement based on Edge preserving interpolation (경계 보존 보간법을 이용한 깊이 영상의 해상도 및 품질 개선)

  • Kim, Ji-Hyun;Choi, Jin-Wook;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.39-41
    • /
    • 2011
  • 본 논문에서는 깊이 영상의 해상도와 품질을 향상시키는 방법을 제안한다. 일반적으로 2D-plus-Depth 구조의 3D 콘텐츠에서는 깊이 영상의 품질이 매우 중요하다. 최근 들어 Time-of-Flight (TOF) 방식의 깊이 센서가 깊이 영상 획득에 많이 사용되고 있는데 TOF 깊이 센서가 제공하는 깊이 영상은 저해상도이기 때문에 고해상도 3D 콘텐츠를 제작하기 위해서는 깊이 영상의 해상도를 상향 변환하는 것이 필수적이다. 또한 고품질의 깊이 영상을 얻기 위해서는 물체 간의 경계를 정교하게 보존하는 것이 중요하다. 최근에는 깊이 영상의 해상도 상향 변환을 위해서 Joint Bilateral Upsampling(JBU) 방식이 많이 사용되고 있다. 본 논문은 깊이 영상의 해상도를 높임에 있어서 우선 보간법을 수행하여 영상의 상향 변환 시에 생긴 빈 홀들의 값을 채워준 후 Bilateral Filtering을 수행함으로써 성능을 높인다. 일반적으로 영상을 상향 변환을 할 때 다양한 방법들이 있는데 본 논문에서는 Nearest Neighborhood(NN), Gaussian과 경계 보존 보간법, 경계 보존 보간법과 Fast Curvature Based Interpolation(FCBI)를 결합한 보간법을 사용하였다. 실험 결과 제안 방법이 기존 방법보다 우수한 성능을 가짐을 보여준다. 또한 경계 보존 보간법과 FCBI를 결합한 보간법을 이용해서 상향 변환을 수행한 결과가 다른 보간법들에 의한 결과보다 우수하다는 점을 알 수 있다.

  • PDF