• Title/Summary/Keyword: Depth Feature

Search Result 431, Processing Time 0.026 seconds

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

The study on the breast types and characteristics of Chinese female adults. (Ver. 1) - Focused on the female college students in Shanghai -

  • Sohn, Hee-Soon;Cha, Su-Joung
    • Journal of Fashion Business
    • /
    • v.13 no.3
    • /
    • pp.118-135
    • /
    • 2009
  • This study is done in Shanghai area by sample survey of female college students. Through direct contact survey, this study collected and analyzed information on figure to understand feature of breasts and measurements of body to provide base information to improve product of brassiere for adult female in China. Data was analyzed by using SPSSWIN 13.0 Program and SAS 9.0. 1. From a result of analysis on the body measures to understand the characteristics of the shape of the breast of the Chinese female college students(18$\sim$24 years old), the bust circumference was 83.86cm and the underbust circumference was 73.37cm and the cup size of a brassiere was 75A. 2. From a result of analysis on the bust measures to understand the relations between the front, lateral and cross-sectional proportions of the bust and the shape of the breast in the Chinese female college students, the chest height was 0.77, the bust height was 0.71 and the underbust height was 0.68 as the information of the body type that shows the location of the bust that is the measure of an item to a height as the front proportion of the bust. For the lateral proportion of the bust, the chest depth of the waist depth was 0.98, the bust depth, 1.21 and the underbust depth, 1.03. While the bust depth/waist depth is ideal when being 1.3, it was 1.21 in this study to be close to the ideal lateral shape. For the cross-sectional proportion of the bust, the area of the largest evenness was the bust followed by the waist, underbust and chest in order. 3. From a result of analysis on the correlation between measured items necessary to understand the characteristic of the shape of the breast, to set up the sizes and to produce the patterns, the underbust circumference had a relatively high correlation between the items of breadth, depth and circumference and weight as the items of basic areas.

Feature-based Disparity Correction for the Visual Discomfort Minimization of Stereoscopic Video Camera (입체영상의 시각 피로 최소화를 위한 특징기반 시차 보정)

  • Jung, Eun-Kyung;Kim, Chang-Il;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.77-87
    • /
    • 2011
  • In this paper, we propose a disparity correction technique to reduce the inherent visual discomfort while watching stereoscopic videos. The visual discomfort must be solved for commercial 3D display systems to provide natural stereoscopic videos to human eyes. The proposed disparity correction technique consists of horizontal and vertical disparity corrections. The horizontal disparity correction is implemented by controlling the depth budget of stereoscopic video using the geometric relations of a stereoscopic camera system. In addition, the vertical disparity correction is implemented by using a feature-based stereo matching algorithm. Conventional vertical disparity corrections have been done by only using camera calibration parameters, which still cause systematic errors in vertical disparities. In this paper, we minimize the vertical disparity as small as possible by using a feature-based correction algorithm. Through the comparisons of conventional feature-based correction algorithms, we analyze the performance of the proposed technique.

Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion (특징 융합을 이용한 농작물 다중 분광 이미지의 의미론적 분할)

  • Jun-Ryeol Moon;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.238-245
    • /
    • 2024
  • In this paper, we propose a framework for improving the performance of semantic segmentation of agricultural multispectral image using feature fusion techniques. Most of the semantic segmentation models being studied in the field of smart farms are trained on RGB images and focus on increasing the depth and complexity of the model to improve performance. In this study, we go beyond the conventional approach and optimize and design a model with multispectral and attention mechanisms. The proposed method fuses features from multiple channels collected from a UAV along with a single RGB image to increase feature extraction performance and recognize complementary features to increase the learning effect. We study the model structure to focus on feature fusion and compare its performance with other models by experimenting with favorable channels and combinations for crop images. The experimental results show that the model combining RGB and NDVI performs better than combinations with other channels.

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Stereo Images-Based Real-time Object Tracking Using Active Feature Model (능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적)

  • Park, Min-Gyu;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.109-116
    • /
    • 2009
  • In this thesis, an object tracking method based on the active feature model and the optical flow in stereo images is proposed. We acquired the translation information of object of interest and the features of object by utilizing the geometric information and depth of stereo images. Tracking performance is improved for the occlude object with this information by predicting the movement information of features of the occlude object. Rigid and non-rigid objects are experimented. From the result of experiment, the OOI can be real-time tracked from complicate back ground. Besides, we got the improved result of object tracking in any occlusion state, no matter what it is rigid or non-rigid object.

An Algorithm to Obtain Location Information of Objects with Concentric Noise Patterns (동심원 잡음패턴을 가진 물체의 위치정보획득 알고리즘)

  • 심영석;문영식;박성한
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1393-1404
    • /
    • 1995
  • For the factory automation(FA) of production or assembly lines, computer vision techniques have been widely used for the recognition and position-control of objects. In this application, it is very important to analyze characteristic features of each object and to find an efficient matching algorithm using the selected features. If the object has regular or homogeneous patterns, the problem is relatively simple. However, If the object is shifted or rotated, and if the depth of the input visual system is not fixed, the problem becomes very complicated. Also, in order to understand and recognize objects with concentric noise patterns, it is more effective to use feature-information represented in polar coordinates than in cartesian coordinates. In this paper, an algorithm for the recognition of objects with concentric circular noise-patterns is proposed. And position-conrtol information is calculated with the matching result. First, a filtering algorithm for eliminating concentric noise patterns is proposed to obtain concentric-feature patterns. Then a shift, rotation and scale invariant alogrithm is proposed for the recognition and position-control of objects uusing invariant feature information. Experimental results indicate the effectiveness of the proposed alogrithm.

  • PDF

Iris Ciphertext Authentication System Based on Fully Homomorphic Encryption

  • Song, Xinxia;Chen, Zhigang;Sun, Dechao
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.599-611
    • /
    • 2020
  • With the application and promotion of biometric technology, biometrics has become more and more important to identity authentication. In order to ensure the privacy of the user, the biometrics cannot be stored or manipulated in plaintext. Aiming at this problem, this paper analyzes and summarizes the scheme and performance of the existing biometric authentication system, and proposes an iris-based ciphertext authentication system based on fully homomorphic encryption using the FV scheme. The implementation of the system is partly powered by Microsoft's SEAL (Simple Encrypted Arithmetic Library). The entire system can complete iris authentication without decrypting the iris feature template, and the database stores the homomorphic ciphertext of the iris feature template. Thus, there is no need to worry about the leakage of the iris feature template. At the same time, the system does not require a trusted center for authentication, and the authentication is completed on the server side directly using the one-time MAC authentication method. Tests have shown that when the system adopts an iris algorithm with a low depth of calculation circuit such as the Hamming distance comparison algorithm, it has good performance, which basically meets the requirements of real application scenarios.

Design and implementation of interpolated view video (중간 시점 영상 생성 기술 설계 및 구현)

  • Lee, Euisang;Park, Seonghwan;Kim, Junsik;Kim, Sangil;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.313-316
    • /
    • 2018
  • 최근 미디어의 생성 및 소비 기술의 발전으로 몰입도 있는 콘텐츠에 대한 수요가 증가하고 있다. View Interpolation 기술은 두 개의 좌/우 영상을 기반으로 하여 두 영상의 중간 시점에 해당하는 영상을 생성해내는 기술이다. 먼저 Depth Hole Filling Module을 이용하여 좌/우 영상 및 그에 대응하는 깊이 지도를 입력으로 받아 깊이 지도에 존재하는 오류를 검출하고, 보정한다. 깊이 지도의 오류 보정이 완료되면, 해당 데이터를 각각 Feature Matching Module 및 Layer Dividing Module로 전달한다. Feature Matching Module은 실사 영상 내의 특징점들을 검출하고, 두 영상 내 특징점을 매칭하는 역할을 수행하며, Layer Dividing Module은 깊이 값을 기반으로 영상의 Layer를 분할한다. Feature Matching Module에서 특징점의 매칭이 완료되면, 특징점의 영상 내 좌표 및 해당 좌표에서의 깊이 값을 Distance Estimating Module로 전달한다. Distance Estimating Module은 전달받은 특징점의 좌표 및 해당 좌표에서의 깊이 값을 기반으로 전체 깊이 값에서의 이동도를 계산한다. 이와 같이 이동도의 계산 및 Layer 분할이 완료되면, 각 Layer를 이동도에 기반하여 이동시키고, 이동된 Layer들을 포개어 배치함으로써 View interpolation을 완성한다.

  • PDF