• Title/Summary/Keyword: Deprotonation

Search Result 66, Processing Time 0.027 seconds

A New Chromogenic Water Sensing System Utilizing Deprotonation and Protonation of Anion Receptor

  • Kim, Young-Hee;Han, Yeon-Kun;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4244-4246
    • /
    • 2011
  • A simple chromogenic system based on 1-fluoride was developed to determine water content in organic solvent. This system utilized deprotonation and protonation of the anion receptor 1. The water content evaluated from this system gave close value to the real water content in the range of 0 to 0.35% in acetonitrile and 0.2 to 0.5% in DMSO. Therefore, protonation and deprotonation phenomenon from the anion receptor by basic anion could be promising method for water sensing system.

PROTEIN CONFORMATIONS OF OCTOPUS RHODOPSIN AND ITS DEPROTONATED PHOTOCYCLE INTERMEDIATE MONITORED BY ABSORPTION AND PROTEIN FLUORESCENCE

  • Jang, Du-Jeon;Lee, SunBae
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.19-25
    • /
    • 1995
  • Picosecond time-resolved and static protein fluorescence spectra and absorption spectra of octopus rhodopsin, a photorecepting protein, are measured and compared with those of bacteriorhodopsin, a photon-induced proton pumping protein, to understand the protein conformations and functions of octopus rhodopsin and its deprotonated photocycle intermediate. The bluer and weaker absorption of retinal indicates that octopus rhodopsin is better in thermal noise suppression but less efficient in light harvesting than bacteriorhodopsin. The protein fluorescence of octopus rhodopsin shows the characteristic of Trp only and the uantum efficiency and lifetime variations may result primarily from variations in the coupling strength with the retinal. The stronger intensity by four times and larger red shift by 12 nm of fluorescence suggest that octopus rhodopsin has more open and looser structure compared with bacteriorhodopsin. Fluorescence decay profiles reveal two decay components of 300 ps (60%) and 2 ns (40%). The deprotonation of protonated Schiff's base increases the shorter decay time to 500 ps and enhances the fluorescence intensity by 20%. The fluorescence and its decay time from Trp residues near retinal are influenced more by the deprotonation. The increase of fluorescence intimates that protein structure becomes loosened and relaxed further by the deprotonation of protonated Schiff's base. The driving force of sequential changes initiated by absorption of a photon is too exhausted after the deprotonation to return the intermediate to the ground state of the begun rhodopsin form.

  • PDF

Theoretical Studies on the Base-Catalyzed Deprotonation of Sulfonyl-Activatec Carbon Acids

  • 김왕기;류완선;손창국;이본수;김창곤;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.208-212
    • /
    • 1997
  • Theoretical AM1 MO studies are reported on the gas-phase deprotonations of N-methyl 4-((Y-phenylsulfonyl)pyridinium cations (Ⅳ) and N-(Y-benzyl) 4-((phenylsulfonyl)methyl pyridinium cations (Ⅴ) using NH3 as a base. Bronsted α values for deprotonation of Ⅳ and Ⅴ are 0.18 and 0.17, respectively. Bronsted β value of 0.53 is found for the deprotonation of Ⅳ and Ⅴ by substituted aniline bases. The negative transition state (TS) imbalances, Ⅰ(=α-β) < 0, are rationalized by the negative distance factor, Δd (=dp-dTS) < 0, where dp and dTS are the distance between anionic charge center and substituents in the product and in the TS, respectively. The inability of d-pπ-conjugation in Ⅳ, where instead n-σ* type sigma delocalization occurs, causes very little lag in the structural reorganization in the TS.

Transmission Substituent Effects through Five-Membered Heteroaromatic Rigns, Ⅱ. Deprotonation Equilibra of Phenol Analogues

  • Son, Chang Guk;Im, Seon Hui;Ri, Sun Gi;Kim, Chang Gon;Kim, Chan Gyeong;Lee, Ik Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.891-895
    • /
    • 2000
  • Transmission of substituent effects through 5-membered heteroaromaticrings isinvestigated theoretically at the RHF/6-31+G* and B3LYP/6-31+G* levelsusing the deprotonation equilibria of phenol analogues with heteroatoms Y = NH, O, PHand S. The incr ease in the resonance delocalization of the $\pilone-pair$ on the phe-nolic oxygen atom, $n\pi(O)$, accompanied with the deprotonation depends on the heteroatom Y,in the order NH < O < PH < S. This represents the $\pielectron$ accepting ability, or conversely reverse order of the $\pielectron$ donating ability of the $\pilone-pair$ on Y, $n\pi(Y).$ The transmission efficiency of substituenteffects is, however,in the reverse order NH > O > S, which represents the order of delocalizability of $n\pi(Y).$ A better correlation is obtained with ${\sigma}p$ - than with ${\sigma}p$ for the Hammett type plots with the positive slope, $\rho-$ > 0, of the magnitude in the same order as that for the delocalizability of $n\pi(Y).$ Thedeprotonation energy, ΔG = [G(PA) + G(H+)] -G(P), decreases with the increasein the extence delocalization in the order NH > O > PH > S.

Anthraquinone and Indole based Chemosensor for Fluoride Anions Detection

  • Son, Young-A;Kim, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • We have designed and synthesized the colorimetric chemosensor through the reactions of 1,2-anthraquinone and indol-3-carboxaldehyde. Due to its well conjugated D-${\pi}$-A system and the existence of NH-fragment in indole moiety, we expected that the chemosensor can detect target anions with NH-fragment in indole part of the structure. In this regard, UV-Vis absorption spectra were measured to investigate sensing properties of the probe toward different anions in DMSO. This chemosensor shows to detect fluoride anions with absorption change in intensity. These properties are mainly related to the deprotonation effect. ICT system in this molecule was also observed by the computational approach using Material Studio 4.3 package.

The Mechanisms for Thermal and Photochemical Isomerizations of N-Substituted 2-Halopyrroles: Syntheses of N-Substituted 3-Halopyrroles

  • Park, Sung-Hyun;Ha, Hong-Joo;Lim, Chul-Taek;Lim, Dong-Kwon;Lee, Kwang-Hee;Park, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1190-1196
    • /
    • 2005
  • Halopyrroles, N-substituted 2-halopyrroles were prepared by halogenation of N-substituted pyrroles with NBS, NCS, or surfuryl chloride. N-Substituted 3-halopyrroles were synthesized by acid-catalyzed thermal and photochemical isomerization reactions of N-substituted 2-halopyrroles. Both the thermal and photochemical reactions were acid-catalyzed. For the acid-catalyzed isomerization, a mechanism of [1,3] bromine shift followed by deprotonation is operated. For the acid-catalyzed photoisomerization, an excited triplet state of 2-protonated N-benzyl-2-halopyrrole produces an intermediate N-substituted pyrrole complex with halonium ion which is equilibrated with N-substituted pyrrole plus halonium ion, and then the halonium ion newly adds to 3-position of N-substituted pyrrole followed by deprotonation to afford N-benzyl-3-halopyrrole.