• Title/Summary/Keyword: Depreciation Procedure

Search Result 8, Processing Time 0.018 seconds

A Study on the Estimation of Economic Depreciation Rate on Industrial Property Using Broad Group Procedure (BG 방법을 활용한 제조설비의 경제적 감가상각률 추정방안)

  • Oh, H.S.;Kwon, S.H.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.148-153
    • /
    • 2012
  • When the number of items of same type of industrial property is quite large, calculating depreciation for a group of such items may be more efficient than depreciating each item separately. Several different depreciation systems may be used for group depreciation. If the life of each vintage in an account are not estimated, then the BG procedure can be used; the BG procedure puts all vintages of the same type of property into a single broad group for depreciation purposes. In this case, only an estimate of the PASL and the net salvage ratio for all the property in the broad group is needed to calculate the depreciation charge.

A Study on the Estimation of Economic Depreciation Rate on Industrial Property for Practical Depreciation (제조설비의 실제적 감가상각을 위한 경제적 감가상각률 추정방안)

  • Oh, H.S.;Kwon, S.H.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.115-119
    • /
    • 2014
  • When the number of items of same type of industrial property is quite large, calculating depreciation for a group of such item may be more efficient than depreciating each item separately. Also, predicting the service life of a specific individual unit is very difficult to do with any degree of accuracy. Estimating the probable average service life (PASL) of many units (or dollars) is not an easy task; however, an average life of many units can probably be predicted with a much higher degree of accuracy than the life of some particular unit. Using the average of many units allows for some units having relatively short lives and some units having relatively long lives without specifying whether a particular unit will have a short or a long life. If the life of each vintage in an account are not estimated, then the broad group procedure can be used. The broad group procedure depreciates the several vintage in an account as a single group. The PASL for this procedure is the estimate of the average of lives of the individual dollars in the group. If the estimated PASL's of the vintages are not the same, then a weighted average PASL would have to be calculated for each calendar year. In this paper, we illustrate the calculations of accrual rates and the annual depreciation charge for each of the calendar years by the broad group depreciation procedure.

A Study on the Estimation of Economic Depreciation Rate on Industrial Property Using Equal Life Group Procedure (ELG 방법을 활용한 제조설비의 경제적 감가상각률 추정방안)

  • Oh, H.S.;Kwon, S.H.;Sung, I.S.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • Several different depreciation systems may be used for group depreciation. The vintage group procedure treats the same type of property placed in service during the same year as a distinct group for depreciation purposes; therefore an estimate of the probable average service life and net salvage ratio(s) of each individual vintage is necessary. The vintage group procedure calculates an accrual rate for each vintage and the accrual rate for an account for specific calendar year is the weighted average vintage accrual rate for that calendar year. A further refinement would be to divide each vintage into groups such that all of the dollars in a group have the same estimated life-an equal life group (ELG). Then each ELG is depreciated over its estimated life. The effect is to recover each dollar over the estimated number of years it is in service. Each vintage is divided into several equal life groups (ELGs) such that all the property in a specific ELG has the same estimated life. The accrual rate for each ELG is based on the estimated life of that ELG. The vintage accrual rate for a specific year is the weighted average ELG accrual rate for that calendar year. In this paper, we illustrate the calculations of vintage accrual rates for each of the calendar years by the ELG depreciation systems.

Study on Estimate of Window Condensation performance Due to Temperature Depreciation Ratio (표면 온도 저하율에 따른 창호부 결로성능 예측에 관한 연구)

  • Sung, Uk-Joo;Cho, Soo;Jang, Cheul-Yong;Lee, Jin-Seong;Peak, Sang-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1255-1260
    • /
    • 2006
  • This present study analyzed temperature depreciation ratio of window inside surface by KS F 2295 'Procedure for determining fenestration product condensation resistance values'. it estimated window indoor surface condensation due to variable environmental condition. Performance of condensation resistance by using temperature depreciation ratio until applied Low-e and Ar glazing improved about 45% from 24 mm clear. Temperature depreciation ratio by KS F 2295 considers analytic index of window condensation due to variable boundary condition.

  • PDF

Methodology to Estimate the Cost of Network Facilities with ABC and its Application (ABC를 활용한 통신 설비 원가 산정 방법론 및 활용 방안)

  • Yoon, Bong-Kyoo;Yang, Won-Seok
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.395-406
    • /
    • 2007
  • In the telecommunication industry, estimation of the cost of network facilities is very important since depreciation cost of the facilities accounts for a large portion of the product cost. Moreover, cost estimation in the industry becomes more difficult because of increasing indirect cost upon digital convergence, expanding multi-purpose facilities, complexity of service product, etc. Nevertheless, not much seem to have been done in improving estimation methodology of the cost of network facilities. As a result, the quality of cost information on network facilities has deteriorated, and now even decision-makers in the industry dismiss the information. Recently, two major telecommunication companies adopted a new network cost estimation method to deal with the issue. In this paper, we study the concept of new cost estimation method and the procedure to develop and apply it. We also suggest the method to carry out the cost allocation using Matlab which is more efficient and time-saving than other commercial cost calculation packages.

Optimal Operation Scale of Hog Production for Farrow-to-Finish Farms

  • Huang, Y.H.;Lee, Y.P.;Yang, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1326-1330
    • /
    • 2001
  • This study analyzed the lowest production cost and the greatest profit to be obtained from marketing hogs to determine the optimal operation scale for family-owned farrow-to-finish farms. Data were collected from 39 farrow-to-finish farms with 500 to 5,000 inventories for two consecutive years, and treated with GLM and quadratic regression models using the REG procedure. Analysis results indicated that farms capable of marketing 2,933 and 3,286 hogs annually had the lowest production cost and the greatest profit, respectively. Further analysis attributed the lowest production cost or the highest return in farms with an optimal scale of 3,000 to a higher survival rate of the herd, as well as lower expenses in veterinary medicine, labor, utilities and fuel, transportation, and depreciation. A similar feed conversion efficiency was observed for all the farms studied. Obviously, the cost efficiencies were associated with the economy of the operation scale of hog production until it reached 3,000 hogs marketed annually for a family-run unit. Beyond the optimal scale of 3,000 hogs, good stockmanship was more difficult to maintain and the herd management deteriorated as increasing mortality confirms. It is conclude that, unless advanced management is applied, the operation scale should not expand beyond 3,000 hogs.

Estimation of Exhaust NOx Emission for Marine Engines (선박엔진의 NOx 배출량 산정)

  • 김대식;엄명도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.441-445
    • /
    • 2000
  • Considering international status of our country as world class ship builder and geographical characteristics encircled by sea in three facets, controlling of air pollutants emission from marine engines becomes more and more important issue in recent days. Implementation of immediate pollutants emission control regulation and standardization of test and certification procedure are required to reduce air pollution from marine engines. But cost increments due to additional equipment of emission control device and development and certification test expenses as well as depreciation of fuel economy should be considered. To satisfy those air pollution reduction and economic requirements, we should make our own interpretation of IMO standard and implementation schedule depending on our country's status. For this purpose we measured NOx emission from small and middle class marine engines to calculate emission factor and total pollutant emission in our country. With the comparison and analysis of other countries emission control regulation we proposed basic data of total emission from marine engine and future emission control standard in our country. According to our estimation, 62% of total NOx emission of marine engines comes from fishing boat and 38% from commercial vessels. The portion of NOx emission from marine engine is 18.6% of whole country NOx emission. Due to the voyage characteristics of middle and large vessel and necessity of international harmonization of marine engine pollutants emission control standard, it is inevitable to adopt IMO standard for middle and large marine engines. But considering technological and cost effect of fishing boat operating in near sea, it is resonable to set a standard within 80% of measured value at the moment and gradually implement the same IMO standard in near future.

  • PDF

Dental implant bottom-up cost analysis (치과 임플란트 상향식(bottom-up) 원가산정)

  • Kim, Min-Young;Choi, Ha-Na;Shin, Ho-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.18-26
    • /
    • 2014
  • Purpose: The purpose of this study was to estimate the cost of dental implant using the bottom-up approach with the current data from dental clinics. Materials and methods: In this study, direct and indirect costs required for each treatment were calculated using the bottom-up approach. In the bottom-up costing, the average monthly total cost of dental clinic includes labor and material costs, administrative expenses, medical malpractice costs, and opportunity costs of invested capital. For the dental implant cost components, those include direct costs (labor costs, laboratory costs, material costs, depreciation or other operating costs), indirect costs (administrative costs), and the opportunity costs of investment for dental clinic. Results: Dental implant costs of metal crown, porcelain crown and over-denture were 1,449,000 won, 1,583,000 won, and 2,471,000 won respectively. The proportion of cost components was as follows. The labor cost were 50%, and material, administrative and other cost were 33%, 15% and 2%, respectively. For direct, indirect and investment cost, the ratio were 83%, 15% and 2%, respectively. Conclusion: The labor costs were evaluated to comprise largest proportion (about 50%, 730,000 won). Dental implant cost using Bottom-up costing was 1,450,000 won for metal crown and 1,580,000 won for porcelain crown.