• Title/Summary/Keyword: Deposition reduction

Search Result 490, Processing Time 0.027 seconds

A Study on the Reclamation of the Furan Sand by the Fluidized Bed (유동층을 이용한 주물사의 재생에 관한 연구)

  • Baek, Ko-Kil;Choi, Yang-Jin
    • Journal of Korea Foundry Society
    • /
    • v.12 no.6
    • /
    • pp.471-479
    • /
    • 1992
  • For the last 2 decades, the bonding materials for the foundry sand and the foundry equipments with high performance have been developed and employed in the foundry shops. In those periods, the furan resins hardened in higher temperature have been replaced with the self-hardened ones in the room temperature. Simultaneously the various reclamation methods of the self-hardened furan resin sand have been developed in order to get the clean working environments, the reduction of solid wastes and the lower of production cost in the foundry. In this experimental study, the combustion reclamation method using the fluidized bed among the various methods was studied in order to reduce the L.O.I. and /or $N_2$ gas due to the deposition of the furan resins and the hardeners. Comparing the results of this experimental combustion reclamation method with those of the employed pneumatic method, the Surface Stability Index of the specimen made by combustion method is 30% higher than that of the latter one and L.O.I. decreases about 30%. The reclamation temperature of 650$^{\circ}C$ in this experimental fluidized bed would be recommended in the viewpoints of the reclamation period, the fuel consumption and the residual quantity of the furan resin. The formula determining the minimum fluidizing velocities according to the temperatures in the fluidized bed has been obtained.

  • PDF

Reduction of anisotropic crystalline quality of a-plane GaN grown on r-plane sapphire

  • Seo, Yong-Gon;Baek, Gwang-Hyeon;Park, Jae-Hyeon;Seo, Mun-Seok;Yun, Hyeong-Do;O, Gyeong-Hwan;Hwang, Seong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.170-170
    • /
    • 2010
  • a-plane 혹은 m-plane면을 사용하는 무분극 GaN LED는 c축 방향으로 발생하는 분극의 영향을 받지 않기 때문에 분극 GaN LED에 비해 높은 내부 양자효율을 가진다. 또한 무분극 GaN는 상대적으로 고농도의 p-type 도핑이 가능하기 때문에 광효율을 높일 수 있다. 하지만 이와 같은 장점에도 불구하고 무분극 GaN는 성장모드의 비대칭으로 인해 높은 결정성과 mirror-like한 표면을 얻기가 힘들다. 본 논문에서는 Metalorganic chemical-vapor deposition (MOCVD) 장비를 사용하여 r-plane 사파이어 기판위에 a-plane GaN을 성장시켰다. 일반적으로 사용하는 저온에서의 nucleation layer 성장 대신 $1050^{\circ}$의 고온에서 성장 시킨후 일반적으로 사용하는 two-step 성장방법으로 그위에 5.5um정도의 GaN을 성장시켰다. 성장시 Trimethylgallium(TMGa)와 암모니아를 각각 Ga과 N 소스로 이용하였고 캐리어 가스는 수소를 사용하였다. 비대칭 결정성을 줄이기 위해 3D island growth mode에서의 성장조건을 바꾸어 c축과 m축 방향으로의 X-ray 결정성(FWHM) 차이가 564 arcsec에서 206 arcsec로 변화 시켰다. Normarski 현미경으로 표면을 관찰한 결과 v-defect이 없고 a-plane GaN에서 볼 수 있는 전형적인 줄무늬 패턴을 가지는 표면을 얻었으며 광학적 특성을 보기 위해 Photoluminescence (PL)을 측정하였다.

  • PDF

Reduction of Vacuum Sublimation by Ion Beam Treatment for e-beam Deposited SiC Films

  • Kim, Jaeun;Hong, Sungdeok;Kim, Yongwan;Park, Jaewon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.1-138.1
    • /
    • 2013
  • We present the low temperature (${\leq}1,000^{\circ}C$) vacuum sublimation behavior of an e-beam evaporative deposited on a SiC film and a method to reduce the vacuum sublimation through an ion beam process. The density of the SiC film deposited using the e-beam evaporation method was ~60% of the density of the bulk source material. We found that the sublimation became appreciable above ${\sim}750^{\circ}C$ under $1.5{\times}10^{-5}$ torr pressure and the sublimation rate increased with an increase in temperature, reaching ~70 nm/h at $950^{\circ}C$ when the coated sample was heated for 5 h. When the film was irradiated with 70 keV N+ ions prior to heating, the sublimation rate decreased to ~23 nm/h at a fluence of $1{\times}10^{17}\;ions/cm^2$. However, a further increase in fluence beyond this value or an extended heating period did not change (decrease or increase) the sublimation rate any further.

  • PDF

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease

  • Yoon, Sang-Sun;AhnJo, Sang-Mee
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.245-255
    • /
    • 2012
  • Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent

  • Sani, Rabiya;Manivannan, R.;Victoria, S. Noyel
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.308-319
    • /
    • 2018
  • Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

Effect of sodium hexa-meta phosphate as pore-sealing agent on the corrosion performance of Al-Zn coating deposited by twin-wire arc thermal spray process in 3.5 wt.% NaCl solution (3.5 중량% NaCl 용액에서 쌍선 아크 용사 공정으로 증착된 Al-Zn 코팅의 부식 성능에 대한 기공 밀봉제로서의 헥사메타인산나트륨의 영향)

  • Singh, Jitendra Kumar;Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.81-82
    • /
    • 2022
  • Al and Zn are used to protect the steel structures from corrosion. In the present studies, 15Al-85Zn alloy wires has been used for the deposition of coating by arc thermal spray process. Moreover, this process of coating exhibited severe defects formation, therefore, this coating was post-treated with different concentrations i.e. 0.05, 0.1 and 0.5M sodium hexa meta phosphate (Na6[(PO3)6]: SHMP) to fill to defects of deposited coatings and assessed their corrosion resistance in 3.5 wt.% NaCl solution with exposure periods. After the treatment, the porosity of the coating reduced significantly by formation of composite oxide films onto the coating surface. Initially, 0.5 M SHMP treated coating exhibited highest in total impedance due to significant reduction of porosity but once the exposure periods are extended, the composite oxides are dissolved, thus, total impedance is decreased.

  • PDF

Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED (스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과)

  • Kyungnam Jang;Seunghan Yang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.